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‘The concept of chance enters into the very first steps of scientific activity, by virtue of the fact
that no observation is absolutely correct. I think chance is a more fundamental concept than
causality, for whether in a concrete case a cause—effect relationship exists can only be judged
by applying the laws of chance to the observations.

Max Born,
Natural Philosophy of Cause and Chance

‘A statistical relationship, however strong and however suggestive, can never establish a
causal connection. Our ideas on causation must come from outside statistics, ultimately from
some theory!

Kendall & Stuart,
The Advanced Theory of Statistics

‘Reliability is, after all, engineering in its most practical form.

James R. Schlesinger
Former US Secretary of State for Defense
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Preface to the First Edition

This book is designed to provide an introduction to reliability engineering and management, both for students
and for practising engineers and managers. The emphasis throughout is on practical applications, and the
mathematical concepts described are accordingly limited to those necessary for solution of the types of
problems covered. Practical approaches to problem-solving, such as the use of probability plotting techniques
and computer programs, are stressed throughout. More advanced texts are cited for further reading on the
mathematical and statistical aspects. The references given in the Bibliographies are limited to those considered
to provide a direct continuation of the chapter material, with the emphasis on practical applications. Tables
and charts are provided to complement the analytical methods described, and numerous worked examples
are included.

The book describes and comments on the usage of the major national and government standards and
specifications covering reliability engineering and management in the USA and the UK. It is considered
that this is an important aspect of the practical approach, since so much engineering development work is
now governed by such documents. The effects of current engineering, commercial and legislative develop-
ments, such as microelectronics, software-based systems, consumerism and product liability, are covered in
some detail.

The requirements of the examination syllabi of the American Society for Quality Control, and the Institute
of Quality Assurance (UK) in reliability engineering are covered, so the book will be suitable for use in courses
leading to these qualifications. The emphasis on practical approaches to engineering and management, the
comprehensive coverage of standards and specifications, and the overall layout of the book should make it
equally as suitable as a general up to date reference for use in industry and in government agencies.

PaTrICK O’CONNOR
1981



Preface to the Second Edition

I have received much helpful criticism of the first edition of my book since it appeared in 1981. Whilst the
reviews have generally not been unfavourable, critics have pointed out that, despite the title, the book was not
quite practical enough in some areas. I have also come to realize this through my own work, particularly on
the application of mathematical modelling and statistics to reliability problems. Consequently, much of the
revision for the second edition has been to add to what I consider to be the practical aspects of management
and engineering for reliability.

I have added to the sections on reliability prediction, demonstration and measurement, to explain and
to stress the fundamental and considerable uncertainty associated with attempts to quantify and forecast a
property of engineered products which is inherently non-deterministic. I believe that when people involved
in reliability work manage to unshackle themselves from the tyranny of the ‘numbers game’ the way is
cleared for the practical engineering and management approaches that are the only ways to achieve the highly
reliable products demanded by the markets of today. I have not removed the descriptions of the methods
for quantifying reliability, since I believe that, when these are applied with commonsense and understanding
of their inherent limitations, they can help us to solve reliability problems and to design and make better
products.

I have added three new chapters, all related to the practical aspects.

The first edition described how to analyse test data, but included little on how to test. I have therefore
written a new chapter on reliability testing, covering environmental and stress testing and the integration of
reliability and other development testing. I am indebted to Wayne Tustin for suggesting this and for his help
and advice on this subject.

The quality of manufacture is obviously fundamental to achieving high reliability. This point was made in
the first edition, but was not developed. I have added a complete chapter on quality assurance (QA), as well
as new material on integrated management of reliability and QA programmes.

Maintenance also affects reliability, so I have added a new chapter on maintenance and maintainability,
with the emphasis on how they affect reliability, how reliability affects maintenance planning and how both
affect availability.

I have also added new material on the important topic of reliability analysis for repairable systems. Harry
Ascher, of the US Naval Research Laboratory, has pointed out that the reliability literature, including the first
edition of my book, has almost totally ignored this aspect, leading to confusion and analytical errors. How
many reliability engineers and teachers know that Weibull analysis of repairable system reliability data can
be quite misleading except under special, unrealistic conditions? Thanks to Harry Ascher, I know now, and I
have tried to explain this in the new edition.

I have also brought other parts of the book up to date, particularly the sections on electronic and software
reliability.

The third reprint of the first edition included many corrections, and more corrections are made in this
edition.

I am extremely grateful to all those who have pointed out errors and have helped me to correct them. Paul
Baird of Hewlett Packard, Palo Alto, was particularly generous. Colleagues at British Aerospace, particularly



XViii Preface to the Second Edition

Brian Collett, Norman Harris, Chris Gilders and Gene Morgan, as well as many others, also provided help,
advice and inspiration.
Finally, my thanks go to my wife Ina for much patience, support and typing.

PaTrICK O’CONNOR
1985



Preface to the Third Edition

The new industrial revolution has been driven mainly by the continuing improvements in quality and pro-
ductivity in nearly all industrial sectors. The key to success in every case has been the complete integration
of the processes that influence quality and reliability, in product specification, design, test, manufacture,
and support. The other essential has been the understanding and control of variation, in the many ways in
which it can affect product performance, cost and reliability. Teachers such as W. E. Deming and G. Taguchi
have continued to grow in stature and following as these imperatives become increasingly the survival kit of
modern industry.

I tried to stress these factors in the second edition, but I have now given them greater prominence. I have
emphasized the use of statistical experimentation for preventing problems, not just for solving them, and the
topic is now described as a design and development activity. [ have added to the chapter on production quality
assurance, to include process improvement methods and more information on process control techniques.
These chapters, and the chapter on management, have all been enlarged to emphasize the integration of
engineering effort to identify, minimize and reduce variation and its effects. The important work of Taguchi
and Shainin is described, for the first time in this book. Chris Gray gave me much valuable help in describing
the Taguchi method.

I have updated several chapters, particularly those on electronic systems reliability. I have also added a new
chapter on reliability of mechanical components and systems. I would like to thank Professor Dennis Carter
for his advice on this chapter.

I have taken the opportunity to restructure the book, to reflect better the main sequence of engineering
development, whilst stressing the importance of an integrated, iterative approach.

I have once more been helped by many people who have contributed kind criticisms of the earlier edition,
and I have tried to take these into account. I also would like to record with thanks my continuing debt to
Norman Harris for his contributions to bridging the gap between engineering and statistics, and for helping
me to express his ideas.

Finally, my heartfelt thanks go to my wife and boys for their forebearance, patience, and support. Having
an author at home must place severe demands on love and tolerance.

PaTrICK O’CONNOR
1990



Preface to the Third Edition Revised

This revised edition has been produced in response to numerous suggestions that the book would be of greater
value to students and teachers if it included exercise questions. David Newton and Richard Bromley have
therefore teamed up with me to produce exercises appropriate to each chapter of the book.

The exercises cover nearly all of the types of questions that occur in the reliability examinations set by
the UK Institute of Quality Assurance (IQA) and by the American Society for Quality Control (ASQC). The
ASQC examination questions are of the multiple-choice type, which is not the format used here, but this
should make no difference to the value of the exercises in preparing for the ASQC examination.

A solutions manual is available to teachers, free of charge, by writing to John Wiley and Sons Ltd in
Chichester.

I would like to thank David Newton and Richard Bromley for their enthusiastic support in preparing this
revised edition.

PaTrICK O’CONNOR
1995



Preface to the Fourth Edition

Itis over ten years since the last major revision and update to my book. Inevitably in that time there have been

developments in engineering technology and in reliability methods. In this new edition I have tried to include

all of the important changes that affect reliability engineering and management today. In keeping with the

original aims of the book, I have emphasised those with practical implications.

The main changes and additions include:

— Updated and more detailed descriptions of how engineering products fail (Chapters 1, 8 and 9).

— More detailed description of the nature of variation in engineering (Chapter 2).

— Descriptions of the Petri net and M(t) methods (Chapters 6 and 12).

— More detailed description of the particular aspects of software in engineering systems, and updated
descriptions of design, analysis and test methods (Chapter 10).

— Expanded descriptions of accelerated test methods for development and manufacturing (Chapters 11 and
13).

— Updated and expanded descriptions of test methods for electronics and acceptance sampling (Chapter
13).

— More detailed descriptions of management aspects, including standards, “six sigma”, and supplier man-
agement (Chapter 15).

— Updated references to standards, and updated and expanded bibliographies.

Some of the new material is adapted from my book “Test Engineering”, with permission from the publisher.

The questions and the answers manual (available separately from the publisher) have been augmented to
cover the new material.

An Internet homepage has been created for the book, at www.pat-oconnor.co.uk/practicalreliability.htm.
The homepage includes listings of suppliers of reliability engineering related services and software.

I would like to express my gratitude to Prof. S.K. Yang for his kind assistance with the description of the
Petri net method, Dr. Gregg Hobbs for his teaching and help on HALT/HASS testing, Prof. Jorgen Moltoft
for helping with the description of the M(t) method, and Jim McLinn for providing additional material,
questions and answers on aspects of accelerated testing and data analysis. I also thank all who have provided
suggestions and pointed out errors. Last but certainly not least I thank my wife, Ina, again.

PAaTRrICK O’CONNOR
2001



Preface to the Fifth Edition

Another ten years have elapsed since publication of the fourth edition. In that interval there have been further
significant developments in reliability engineering methods, mainly related to the use of software to perform
analysis of designs and of reliability data. Of course there have also been developments in engineering that
affect reliability. The internet has added a new dimension to the availability of information and tools.

In order to describe many of these developments, Andre Kleyner has taken on the role of joint author and the
two of us have worked together to create this new edition. Andre has contributed most of the new material. In
particular, he has provided the software-based solutions to many of the examples, supplementing or replacing
manual and graphical methods. He has also updated some of the technology aspects and contributed new
sections on data analysis and other topics.

The main changes and additions include:

— Software implementation of statistical methods, including probability plotting and a wider use of common
software tools such as Microsoft Excel®.

— Expanded description and applications of Monte Carlo simulation methods, in a new chapter.

— More detailed descriptions of reliability prediction methods.

— Expanded treatment of accelerated test data analysis.

— Analysis of warranty data.

— Expanded description of reliability demonstration methods, in a new chapter.

— Course instructors who adapted this book can request the Solutions Mannual at: www.wiley.com/go/
oconnor_reliability5.

— General updating of references, including published papers and internet links.

— The Questions sections, originally developed with major contributions from David Newton and Richard
Bromley, have been revised and expanded.

A solutions manual for the end-of-chapter questions and instructor’s PowerPoint slides are available as a free
download, to course tutors only at: www.wiley.com/go/oconnor_reliability5.

We hope that the new edition will maintain the value of Practical Reliability Engineering to engineers,
managers, teachers and students.

PaTrICK O’CONNOR
2011
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1

Introduction to Reliability Engineering

1.1 What is Reliability Engineering?

No one disputes the need for engineered products to be reliable. The average consumer is acutely aware of the
problem of less than perfect reliability in domestic products such as TV sets and automobiles. Organizations
such as airlines, the military and public utilities are aware of the costs of unreliability. Manufacturers often
suffer high costs of failure under warranty. Argument and misunderstanding begin when we try to quantify
reliability values, or try to assign financial or other cost or benefit values to levels of reliability.

The simplest, purely producer-oriented or inspectors’ view of quality is that in which a product is assessed
against a specification or set of attributes, and when passed is delivered to the customer. The customer, having
accepted the product, accepts that it might fail at some future time. This simple approach is often coupled
with a warranty, or the customer may have some protection in law, so that he may claim redress for failures
occurring within a stated or reasonable time. However, this approach provides no measure of quality over a
period of time, particularly outside a warranty period. Even within a warranty period, the customer usually has
no grounds for further action if the product fails once, twice or several times, provided that the manufacturer
repairs the product as promised each time. If it fails often, the manufacturer will suffer high warranty costs,
and the customers will suffer inconvenience. Outside the warranty period, only the customer suffers. In any
case, the manufacturer will also probably incur a loss of reputation, possibly affecting future business.

We therefore come to the need for a time-based concept of quality. The inspectors’ concept is not time-
dependent. The product either passes a given test or it fails. On the other hand, reliability is usually concerned
with failures in the time domain. This distinction marks the difference between traditional quality control and
reliability engineering.

Whether failures occur or not, and their times to occurrence, can seldom be forecast accurately. Reliability is
therefore an aspect of engineering uncertainty. Whether an item will work for a particular period is a question
which can be answered as a probability. This results in the usual engineering definition of reliability as:

The probability that an item will perform a required function without failure under stated conditions for
a stated period of time.

Reliability can also be expressed as the number of failures over a period.
Durability is a particular aspect of reliability, related to the ability of an item to withstand the effects of
time (or of distance travelled, operating cycles, etc.) dependent mechanisms such as fatigue, wear, corrosion,

Practical Reliability Engineering, Fifth Edition. Patrick D. T. O’Connor and Andre Kleyner.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



2 Chapter 1 Introduction to Reliability Engineering

electrical parameter change, and so on. Durability is usually expressed as a minimum time before the
occurrence of wearout failures. In repairable systems it often characterizes the ability of the product to
function after repairs.

The objectives of reliability engineering, in the order of priority, are:

1 To apply engineering knowledge and specialist techniques to prevent or to reduce the likelihood or
frequency of failures.

2 To identify and correct the causes of failures that do occur, despite the efforts to prevent them.

To determine ways of coping with failures that do occur, if their causes have not been corrected.

4 To apply methods for estimating the likely reliability of new designs, and for analysing reliability data.

(O8]

The reason for the priority emphasis is that it is by far the most effective way of working, in terms of
minimizing costs and generating reliable products.

The primary skills that are required, therefore, are the ability to understand and anticipate the possible
causes of failures, and knowledge of how to prevent them. It is also necessary to have knowledge of the
methods that can be used for analysing designs and data. The primary skills are nothing more than good
engineering knowledge and experience, so reliability engineering is first and foremost the application of good
engineering, in the widest sense, during design, development, manufacture and service.

Mathematical and statistical methods can be used for quantifying reliability (prediction, measurement) and
for analysing reliability data. The basic methods are described in Chapter 2, to provide an introduction for
some of the applications described subsequently. However, because of the high levels of uncertainty involved
these can seldom be applied with the kind of precision and credibility that engineers are accustomed to when
dealing with most other problems. In practice the uncertainty is often in orders of magnitude. Therefore
the role of mathematical and statistical methods in reliability engineering is limited, and appreciation of
the uncertainty is important in order to minimize the chances of performing inappropriate analysis and
of generating misleading results. Mathematical and statistical methods can make valuable contributions
in appropriate circumstances, but practical engineering must take precedence in determining the causes
of problems and their solutions. Unfortunately not all reliability training, literature and practice reflect
this reality.

Over-riding all of these aspects, though, is the management of the reliability engineering effort. Since
reliability (and very often also safety) is such a critical parameter of most modern engineering products,
and since failures are generated primarily by the people involved (designers, test engineers, manufactur-
ing, suppliers, maintainers, users), it can be maximized only by an integrated effort that encompasses
training, teamwork, discipline, and application of the most appropriate methods. Reliability engineering
“specialists” cannot make this happen. They can provide support, training and tools, but only managers can
organize, motivate, lead and provide the resources. Reliability engineering is, ultimately, effective manage-
ment of engineering.

1.2 Why Teach Reliability Engineering?

Engineering education is traditionally concerned with teaching how manufactured products work. The ways
in which products fail, the effects of failure and aspects of design, manufacture, maintenance and use which
affect the likelihood of failure are not usually taught!, mainly because it is necessary to understand how a

'Mechanical engineering curricula normally include basic failure processes such as fracture mechanics, wear and corrosion.
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product works before considering ways in which it might fail. For many products the tendency to approach
the failed state is analogous to entropy. The engineer’s tasks are to design and maintain the product so that
the failed state is deferred. In these tasks he faces the problems inherent in the variability of engineering
materials, processes and applications. Engineering education is basically deterministic, and does not usually
pay sufficient attention to variability. Yet variability and chance play a vital role in determining the reliability
of most products. Basic parameters like mass, dimensions, friction coefficients, strengths and stresses are
never absolute, but are in practice subject to variability due to process and materials variations, human factors
and applications. Some parameters also vary with time. Understanding the laws of chance and the causes
and effects of variability is therefore necessary for the creation of reliable products and for the solution of
problems of unreliability.

However, there are practical problems in applying statistical knowledge to engineering problems. These
problems have probably deterred engineers in the past from using statistical methods, and texts on reliability
engineering and mathematics have generally stressed the theoretical aspects without providing guidance on
their practical application. To be helpful a theoretical basis must be credible, and statistical methods which
work well for insurance actuaries, market researchers or agricultural experimenters may not work as well for
engineers. This is not because the theory is wrong, but because engineers usually have to cope with much
greater degrees of uncertainty, mainly due to human factors in production and use.

Some highly reliable products are produced by design and manufacturing teams who practise the traditional
virtues of reliance on experience and maintenance of high quality. They do not see reliability engineering
as a subject requiring specialist consideration, and a book such as this would teach them little that they did
not already practise in creating their reliable products. Engineers and managers might therefore regard a
specialist reliability discipline with scepticism. However, many pressures now challenge the effectiveness
of the traditional approaches. Competition, the pressure of schedules and deadlines, the cost of failures, the
rapid evolution of new materials, methods and complex systems, the need to reduce product costs, and safety
considerations all increase the risks of product development. Figure 1.1 shows the pressures that lead to the
overall perception of risk. Reliability engineering has developed in response to the need to control these risks.

Later chapters will show how reliability engineering methods can be applied to design, development,
manufacturing and maintenance to control the level of risk. The extent to which the methods are applicable
must be decided for each project and for each design area. They must not replace normal good practice, such
as safe design for components subject to cyclic loading, or application guidelines for electronic components.

Competition \ \/ Market pressure

% Management emphasis

Safety \
% Customer requirements

Warranty and _—

service costs K Legal, statutory

Perceived
risk

\

Public liability Development risks

Figure 1.1 Perception of risk.
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They should be used to supplement good practice. However, there are times when new risks are being taken,
and the normal rules and guidelines are inadequate or do not apply. Sometimes we take risks unwittingly,
when we assume that we can extrapolate safely from our present knowledge. Designers and managers are
often overoptimistic or are reluctant to point out risks about which they are unsure.

It is for these reasons that an understanding of reliability engineering principles and methods is now an
essential ingredient of modern engineering.

1.3 Why Do Engineering Products Fail?

There are many reasons why a product might fail. Knowing, as far as is practicable, the potential causes
of failures is fundamental to preventing them. It is rarely practicable to anticipate all of the causes, so it is
also necessary to take account of the uncertainty involved. The reliability engineering effort, during design,
development and in manufacture and service should address all of the anticipated and possibly unanticipated
causes of failure, to ensure that their occurrence is prevented or minimized.

The main reasons why failures occur are:

1 The design might be inherently incapable. It might be too weak, consume too much power, suffer
resonance at the wrong frequency, and so on. The list of possible reasons is endless, and every design
problem presents the potential for errors, omissions, and oversights. The more complex the design or
difficult the problems to be overcome, the greater is this potential.

2 The item might be overstressed in some way. If the stress applied exceeds the strength then failure will
occur. An electronic component will fail if the applied electrical stress (voltage, current) exceeds the ability
to withstand it, and a mechanical strut will buckle if the compression stress applied exceeds the buckling
strength. Overstress failures such as these do happen, but fortunately not very often, since designers
provide margins of safety. Electronic component specifications state the maximum rated conditions of
application, and circuit designers take care that these rated values are not exceeded in service. In most
cases they will in fact do what they can to ensure that the in-service worst case stresses remain below
the rated stress values: this is called ‘de-rating’. Mechanical designers work in the same way: they know
the properties of the materials being used (e.g. ultimate tensile strength) and they ensure that there is an
adequate margin between the strength of the component and the maximum applied stress. However, it
might not be possible to provide protection against every possible stress application.

3 Failures might be caused by variation. In the situations described above the values of strength and load
are fixed and known. If the known strength always exceeds the known load, as shown in Figure 1.2, then
failure will not occur. However, in most cases, there will be some uncertainty about both. The actual
strength values of any population of components will vary: there will be some that are relatively strong,
others that are relatively weak, but most will be of nearly average strength. Also, the loads applied will be
variable. Figure 1.3 shows this type of situation. As before, failure will not occur so long as the applied
load does not exceed the strength. However, if there is an overlap between the distributions of load and
strength, and a load value in the high tail of the load distribution is applied to an item in the weak tail
of the strength distribution so that there is overlap or inferference between the distributions (Figure 1.4),
then failure will occur. We will discuss load and strength interference in more detail in Chapter 5.

4 Failures can be caused by wearout. We will use this term to include any mechanism or process that causes
an item that is sufficiently strong at the start of its life to become weaker with age. Well-known examples
of such processes are material fatigue, wear between surfaces in moving contact, corrosion, insulation
deterioration, and the wearout mechanisms of light bulbs and fluorescent tubes. Figure 1.5 illustrates this
kind of situation. Initially the strength is adequate to withstand the applied loads, but as weakening occurs
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Figure 1.5 Time-dependent load and strength variation.

over time the strength decreases. In every case the average value falls and the spread of the strength
distribution widens. This is a major reason why it is so difficult to provide accurate predictions of the lives
of such items.

5 Failures can be caused by other time-dependent mechanisms. Battery run-down, creep caused by simul-
taneous high temperature and tensile stress, as in turbine discs and fine solder joints, and progressive drift
of electronic component parameter values are examples of such mechanisms.

6 Failures can be caused by sneaks. A sneak is a condition in which the system does not work properly even
though every part does. For example, an electronic system might be designed in such a way that under
certain conditions incorrect operation occurs. The fatal fire in the Apollo spacecraft crew capsule was
caused in this way: the circuit design ensured that an electrical short circuit would occur when a particular
sequence was performed by the crew. Sneaks can also occur in software designs.

7 Failures can be caused by errors, such as incorrect specifications, designs or software coding, by faulty as-
sembly or test, by inadequate or incorrect maintenance, or by incorrect use. The actual failure mechanisms
that result might include most of the list above.

8 There are many other potential causes of failure. Gears might be noisy, oil seals might leak, display screens
might flicker, operating instructions might be wrong or ambiguous, electronic systems might suffer from
electromagnetic interference, and so on.

Failures have many different causes and effects, and there are also different perceptions of what kinds of
events might be classified as failures. The burning O-ring seals on the Space Shuttle booster rockets were not
classed as failures, until the ill-fated launch of Challenger. We also know that all failures, in principle and
almost always in practice, can be prevented.

1.4 Probabilistic Reliability

The concept of reliability as a probability means that any attempt to quantify it must involve the use of
statistical methods. An understanding of statistics as applicable to reliability engineering is therefore a
necessary basis for progress, except for the special cases when reliability is perfect (we know the item will
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never fail) or it is zero (the item will never work). In engineering we try to ensure 100 % reliability, but
our experience tells us that we do not always succeed. Therefore reliability statistics are usually concerned
with probability values which are very high (or very low: the probability that a failure does occur, which is
1 —reliability). Quantifying such numbers brings increased uncertainty, since we need correspondingly more
information. Other sources of uncertainty are introduced because reliability is often about people who make
and people who use the product, and because of the widely varying environments in which typical products
might operate.

Further uncertainty, often of a subjective nature, is introduced when engineers begin to discuss failures.
Should a failure be counted if it was due to an error that is hoped will not be repeated? If design action is
taken to reduce the risk of one type of failure, how can we quantify our trust in the designer’s success? Was
the machine under test typical of the population of machines?

Reliability is quantified in other ways. We can specify a reliability as the mean number of failures in a given
time (failure rate), or as the mean time between failures (MTBF) for items which are repaired and returned to
use, or as the mean time to failure (MTTF) for items which are not repaired, or as the proportion of the total
population of items failing during the mission life.

The application and interpretation of statistics to deal with the effects of variability on reliability are less
straightforward than in, say, public opinion polls or measurement of human variations such as IQ or height.
In these applications, most interest is centred around the behaviour of the larger part of the population or
sample, variation is not very large and data are plentiful. In reliability we are concerned with the behaviour in
the extreme tails of distributions and possibly unlikely combinations of load and strength, where variability
is often hard to quantify and data are expensive.

Further difficulties arise in the application of statistical theory to reliability engineering, owing to the
fact that variation is often a function of time or of time-related factors such as operating cycles, diurnal or
seasonal cycles, maintenance periods, and so on. Engineering, unlike most fields of knowledge, is primarily
concerned with change, hopefully, but not always, for the better. Therefore the reliability data from any past
situation cannot be used to make credible forecasts of the future behaviour, without taking into account non-
statistical factors such as design changes, maintainer training, and even imponderables such as unforeseeable
production or service problems. The statistician working in reliability engineering needs to be aware of
these realities.

Chapter 2 provides the statistical basis of reliability engineering, but it must always be remembered that
quality and reliability data contain many sources of uncertainty and variability which cannot be rigorously
quantified. It is also important to appreciate that failures and their causes are by no means always clear-
cut and unambiguous. They are often open to interpretation and argument. They also differ in terms of
importance (cost, safety, other effects). Therefore we must be careful not to apply only conventional scientific,
deterministic thinking to the interpretation of failures. For example, a mere count of total reported failures of a
product is seldom useful or revealing. It tells us nothing about causes or consequences, and therefore nothing
about how to improve the situation. This contrasts with a statement of a physical attribute such as weight or
power consumption, which is usually unambiguous and complete. Nevertheless, it is necessary to derive values
for decision-making, so the mathematics are essential. The important point is that the reliability engineer
or manager is not, like an insurance actuary, a powerless observer of his statistics. Statistical derivations of
reliability are not a guarantee of results, and these results can be significantly affected by actions taken by
quality and reliability engineers and managers.

1.5 Repairable and Non-Repairable Items

It is important to distinguish between repairable and non-repairable items when predicting or measuring
reliability.
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For a non-repairable item such as a light bulb, a transistor, a rocket motor or an unmanned spacecraft,
reliability is the survival probability over the item’s expected life, or for a period during its life, when only
one failure can occur. During the item’s life the instantaneous probability of the first and only failure is called
the hazard rate. Life values such as the mean life or mean time to failure (MTTF), or the expected life by
which a certain percentage might have failed (say 10 %.) (percentile life), are other reliability characteristics
that can be used. Note that non-repairable items may be individual parts (light bulbs, transistors, fasteners)
or systems comprised of many parts (spacecraft, microprocessors).

For items which are repaired when they fail, reliability is the probability that failure will not occur in the
period of interest, when more than one failure can occur. It can also be expressed as the rate of occurrence of
failures (ROCOF), which is sometimes referred as the failure rate (usually denoted as A). However, the term
failure rate has wider meaning and is often applied to both repairable and non-repairable systems expressing
the number of failures per unit time, as applied to one unit in the population, when one or more failures
can occur in a time continuum. It is also sometimes used as an averaged value or practical metric for the
hazard rate.

Repairable system reliability can also be characterized by the mean time between failures (MTBF), but
only under the particular condition of a constant failure rate. It is often assumed that failures do occur at a
constant rate, in which case the failure rate A = (MTBF)~!. However, this is only a special case, valuable
because it is often true and because it is easy to understand.

We are also concerned with the availability of repairable items, since repair takes time. Availability is
affected by the rate of occurrence of failures (failure rate) and by maintenance time. Maintenance can be
corrective (i.e. repair) or preventive (to reduce the likelihood of failure, e.g. lubrication). We therefore need to
understand the relationship between reliability and maintenance, and how both reliability and maintainability
can affect availability.

Sometimes an item may be considered as both repairable and non-repairable. For example, a missile is
a repairable system whilst it is in store and subjected to scheduled tests, but it becomes a non-repairable
system when it is launched. Reliability analysis of such systems must take account of these separate states.
Repairability might also be determined by other considerations. For example, whether an electronic circuit
board is treated as a repairable item or not will depend upon the cost of repair. An engine or a vehicle might
be treated as repairable only up to a certain age.

Repairable system reliability data analysis is covered in Chapter 13 and availability and maintainability in
Chapter 16.

1.6 The Pattern of Failures with Time (Non-Repairable Items)

There are three basic ways in which the pattern of failures can change with time. The hazard rate may be
decreasing, increasing or constant. We can tell much about the causes of failure and about the reliability of
the item by appreciating the way the hazard rate behaves in time.

Decreasing hazard rates are observed in items which become less likely to fail as their survival time
increases. This is often observed in electronic equipment and parts. ‘Burn-in’ of electronic parts is a good
example of the way in which knowledge of a decreasing hazard rate is used to generate an improvement in
reliability. The parts are operated under failure-provoking stress conditions for a time before delivery. As
substandard parts fail and are rejected the hazard rate decreases and the surviving population is more reliable.

A constant hazard rate is characteristic of failures which are caused by the application of loads in excess of
the design strength, at a constant average rate. For example, overstress failures due to accidental or transient
circuit overload, or maintenance-induced failures of mechanical equipment, typically occur randomly and at
a generally constant rate.
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Figure 1.6 The ‘bathtub’ curve.

Wearout failure modes follow an increasing hazard rate. For example, material fatigue brought about by
strength deterioration due to cyclic loading is a failure mode which does not occur for a finite time, and then
exhibits an increasing probability of occurrence.

The combined effect generates the so-called bathtub curve (Figure 1.6). This shows an initial decreasing
hazard rate or infant mortality period, an intermediate useful life period and a final wearout period. Death
is a good analogy to failure of a non-repairable system, and the bathtub curve model is similar to actuarial
statistical models.

1.7 The Pattern of Failures with Time (Repairable Items)

The failure rates (or ROCOF) of repairable items can also vary with time, and important implications can be
derived from these trends.

A constant failure rate (CFR) is indicative of externally induced failures, as in the constant hazard rate
situation for non-repairable items. A CFR is also typical of complex systems subject to repair and overhaul,
where different parts exhibit different patterns of failure with time and parts have different ages since repair
or replacement. Repairable systems can show a decreasing failure rate (DFR) when reliability is improved
by progressive repair, as defective parts which fail relatively early are replaced by good parts. ‘Burn in’ is
applied to electronic systems, as well as to parts, for this purpose.

An increasing failure rate (IFR) occurs in repairable systems when wearout failure modes of parts begin
to predominate.

The pattern of failures with time of repairable systems can also be illustrated by use of the bathtub curve
(Figure 1.6), but with the failure rate (ROCOF) plotted against age instead of the hazard rate.

The statistical treatment of failure data is covered in Chapters 2 and 3.

1.8 The Development of Reliability Engineering

Reliability engineering, as a separate engineering discipline, originated in the United States during the 1950s.
The increasing complexity of military electronic systems was generating failure rates which resulted in
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greatly reduced availability and increased costs. Solid state electronics technology offered long term hope,
but conversely miniaturization was to lead to proportionately greater complexity, which offset the reliability
improvements expected. The gathering pace of electronic device technology meant that the developers of
new military systems were making increasing use of large numbers of new component types, involving new
manufacturing processes, with the inevitable consequences of low reliability. The users of such equipment
were also finding that the problems of diagnosing and repairing the new complex equipment were seriously
affecting its availability for use, and the costs of spares, training and other logistics support were becoming
excessive. Against this background the US Department of Defense and the electronics industry jointly set up
the Advisory Group on Reliability of Electronic Equipment (AGREE) in 1952. The AGREE report concluded
that, to break out of the spiral of increasing development and ownership costs due to low reliability, disciplines
must be laid down as integral activities in the development cycle for electronic equipment. The report laid
particular stress on the need for new equipments to be tested for several thousand hours in high stress
cyclical environments including high and low temperatures, vibration and switching, in order to discover the
majority of weak areas in a design at an early enough stage to enable them to be corrected before production
commenced. Until that time, environmental tests of tens of hours’ duration had been considered adequate
to prove the suitability of a design. The report also recommended that formal demonstrations of reliability,
in terms of statistical confidence that a specified MTBF had been exceeded, be instituted as a condition for
acceptance of equipment by the procuring agency. A large part of the report was devoted to providing detailed
test plans for various levels of statistical confidence and environmental conditions.

The AGREE report was accepted by the Department of Defense, and AGREE testing quickly became a
standard procedure. Companies which invested in the expensive environmental test equipment necessary soon
found that they could attain levels of reliability far higher than by traditional methods. It was evident that
designers, particularly those working at the fringes of advanced technology, could not be expected to produce
highly reliable equipment without it being subjected to a test regime which would show up weaknesses.
Complex systems and the components used in them included too many variables and interactions for the
human designer to cope with infallibly, and even the most careful design reviews and disciplines could not
provide sufficient protection. Consequently it was necessary to make the product speak for itself, by causing
it to fail, and then to eliminate the weaknesses that caused the failures. The Department of Defense (DOD)
reissued the AGREE report on testing as US Military Standard (MIL-STD) 781, Reliability Qualification and
Production Approval Tests.

Meanwhile the revolution in electronic device technology continued, led by integrated micro circuitry.
Increased emphasis was now placed on improving the quality of devices fitted to production equipments.
Screening techniques, in which all production devices are subjected to elevated thermal, electrical and other
stresses, were introduced in place of the traditional sampling techniques. With component populations on even
single printed circuit boards becoming so large, sampling no longer provided sufficient protection against the
production of defective equipment. These techniques were formalized in military standards covering the full
range of electronic components. Components produced to these standards were called ‘Hi-rel” components.
Specifications and test systems for electronic components, based upon the US Military Standards, were
developed in the United Kingdom and in continental Europe, and internationally through the International
Electrotechnical Commission (IEC).

However, improved quality standards in the electronic components industry resulted in dramatic improve-
ments in the reliability of commercial components. As a result, during the 1980s the US Military began
switching from military grade electronic components to “commercial off the shelf”” (COTS) parts in order to
reduce costs, and this approach has spread to other applications.

Engineering reliability effort in the United States developed quickly, and the AGREE and reliability pro-
gramme concepts were adopted by NASA and many other major suppliers and purchasers of high technology
equipment. In 1965 the DOD issued MIL-STD-785—Reliability Programs for Systems and Equipment. This
document made mandatory the integration of a programme of reliability engineering activities with the
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traditional engineering activities of design, development and production, as it was by then realized that such
an integrated programme was the only way to ensure that potential reliability problems would be detected
and eliminated at the earliest, and therefore the cheapest, stage in the development cycle. Much written
work appeared on the cost-benefit of higher reliability, to show that effort and resources expended during
early development and during production testing, plus the imposition of demonstrations of specified levels
of reliability to MIL-STD-781, led to reductions in in-service costs which more than repaid the reliability
programme expenditure. The concept of life cycle costs (LCC), or whole life costs, was introduced.

In the United Kingdom, Defence Standard 00—40, The Management of Reliability and Maintainability
was issued in 1981. The British Standards Institution issued BS 5760 — Guide on Reliability of Systems,
Equipments and Components. In the 1990s the series of European Reliability/Dependability? standards began
to be developed, and became integrated into the International Standards Organization (ISO). For example
ISO/IEC 60 300 describes the concepts and principles of dependability management systems. It identifies the
generic processes for planning, resource allocation, control, and tailoring necessary to meet dependability
objectives. At present, there is a large number of ISO standards regulating testing, validation, reliability
analysis, and various other aspects of product development.

Starting in the early 1980s, the reliability of new Japanese industrial and commercial products took Western
competitors by surprise. Products such as automobiles, electronic components and systems, and machine tools
achieved levels of reliability far in excess of previous experience. These products were also less expensive
and often boasted superior features and performance. The ‘Japanese quality revolution’ had been driven by
the lessons taught by American teachers brought in to help Japan’s post-war recovery. The two that stand out
were J.R. Juran and W. Edwards Deming, who taught the principles of ‘total quality management’ (TQM)
and continuous improvement. Japanese pioneers, particularly K. Ishikawa, also contributed. These ideas were
all firmly rooted in the teaching of the American writer on management, Peter Drucker (Drucker, 1995), that
people work most effectively when they are given the knowledge and authority to identify and implement
improvements, rather than being expected to work to methods dictated by ‘management’.

These ideas led to great increases in productivity and quality, and thus in reliability and market penetration,
as Drucker had predicted. Many Western companies followed the new path that had been blazed and also
made great improvements. The message is now almost universally applied, particularly with the trend to
international outsourcing of manufacturing.

The Western approach had been based primarily on formal procedures for design analysis and reliability
demonstration testing, whereas the Japanese concentrated on manufacturing quality. Nowadays most cus-
tomers for systems such as military, telecommunications, transport, power generation and distribution, and
so on, rely upon contractual motivation, such as warranties and service support, rather than on imposition of
standards that dictate exactly how reliability activities should be performed.

Another aspect of reliability thinking that has developed is the application of statistical methods, primarily
to the analysis of failure data and to predictions of reliability and safety of systems. Since reliability can
be expressed as a probability, and is affected by variation, in principle these methods are applicable. They
form the basis of most teaching and literature on the subject. However, variation in engineering is usually
of such an uncertain nature that refined mathematical and quantitative techniques can be inappropriate and
misleading. This aspect will be discussed in later chapters.

1.9 Courses, Conferences and Literature

Reliability engineering and management are now taught in engineering courses at a large number of univer-
sities, colleges and polytechnics, and on specialist short courses.

2In this context dependability is defined as including reliability, maintainability, availability and safety.
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Conferences on general and specific reliability engineering and management topics have been held regularly
in the United States since the 1960s and in Europe and elsewhere since the 1970s. The best known is the annual
US Reliability and Maintainability Symposium (RAMS), sponsored by most of the important engineering
associations and institutions in the United States. It is held every year and its conference proceedings contain
much useful information and are often cited. The European Safety and Reliability Conference (ESREL) is
also held annually and publishes proceedings on a variety of reliability topics, and conferences take place in
other countries.

Journals on reliability have also appeared; some are referenced at the end of this chapter. Several books
have been published on the subjects of reliability engineering and management; some of these are referenced
at the end of other chapters.

Much of the reliability literature has tended to emphasize the mathematical and analytical aspects of the
subject, with the result that reliability engineering is often considered by designers and others to be a rather
esoteric subject. This is unfortunate, since it creates barriers to communication. It is important to emphasize
the more practical aspects and to integrate reliability work into the overall management and engineering
process. These aspects are covered in later chapters.

1.10 Organizations Involved in Reliability Work

Several organizations have been created to develop policies and methods in reliability engineering and to
undertake research and training. Amid those organizations it is important to mention ASQ (American Society
for Quality), which became a truly international organization with members in almost every country in
the world. ASQ has many internal organizations including the Reliability Division which is the worldwide
professional group with the focus on reliability specific training, education, networking and best practices.

1.11 Reliability as an Effectiveness Parameter

With the increasing cost and complexity of many modern systems, the importance of reliability as an
effectiveness parameter, which should be specified and paid for, has become apparent. For example, a radar
station, a process plant or an airliner must be available when required, and the cost of non-availability,
particularly if it is unscheduled, can be very high. In the weapons field, if an anti-aircraft missile has a less
than 100 % probability of functioning correctly throughout its engagement sequence, operational planners
must consider deploying the appropriate extra quantity to provide the required level of defence. The Apollo
project second stage rocket was powered by six rocket motors; any five would have provided sufficient
impulse, but an additional motor was specified to cater for a possible failure of one. As it happened there
were no failures, and every launch utilized an ‘unnecessary’ motor. These considerations apply equally to
less complex systems, such as vending and copying machines, even if the failure costs are less dramatic in
absolute terms.

As an effectiveness parameter, reliability can be ‘traded off” against other parameters. Reliability generally
affects availability, and in this context maintainability is also relevant. Reliability and maintainability are
often related to availability by the formula:

MTBF

Availability = MTBF + MTTR

where MTTR is the mean time to repair. This is the simplest steady-state situation. It is clear that availability
improvements can be achieved by improving either MTBF or MTTR. For example, automatic built-in test
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equipment can greatly reduce diagnostic times for electronic equipment, at a cost of a slight reduction in
overall reliability and an increase in unit costs. Many other parameters can be considered in trade-offs, such
as weight, redundancy, cost of materials, parts and processes, or reduction in performance.

The greatest difficulty in estimating relationships for reliability trade-offs derives from the fact that,
whereas it is possible to estimate quite accurately such factors as the cost and weight penalties of built-in
test equipment, the cost of materials and components, or the worth of a measurable performance parameter,
the effect on reliability cannot generally be forecast accurately, and reliability measurements can at best be
made only within statistical limits imposed by the amount of data available. Selection of trade-offs must
therefore be very much a matter of experience of similar projects in the knowledge that wide margins of error
can exist.

1.12 Reliability Programme Activities

What, then, are the actions that managers and engineers can take to influence reliability? One obvious activity
already mentioned is quality assurance (QA), the whole range of functions designed to ensure that delivered
products are compliant with the design. For many products, QA is sufficient to ensure high reliability,
and we would not expect a company mass-producing simple diecastings for non-critical applications to
employ reliability staff. In such cases the designs are simple and well proven, the environments in which
the products will operate are well understood and the very occasional failure has no significant financial or
operational effect. QA, together with craftsmanship, can provide adequate assurance for simple products or
when the risks are known to be very low. Risks are low when safety margins can be made very large, as
in most structural engineering. Reliability engineering disciplines may justifiably be absent in many types
of product development and manufacture. QA disciplines are, however, essential elements of any integrated
reliability programme.

A formal reliability programme is necessary whenever the risks or costs of failure are not low. We have
already seen how reliability engineering developed as a result of the high costs of unreliability of military
equipment, and later in commercial applications. Risks of failure usually increase in proportion to the number
of components in a system, so reliability programmes are required for any product whose complexity leads
to an appreciable risk.

An effective reliability programme should be based on the conventional wisdom of responsibility and
authority being vested in one person. Let us call him or her the reliability programme manager. The re-
sponsibility must relate to a defined objective, which may be a maximum warranty cost figure, an MTBF
to be demonstrated or a requirement that failure will not occur. Having an objective and the authority, how
does the reliability programme manager set about his or her task, faced as he or she is with a responsibility
based on uncertainties? This question will be answered in detail in subsequent chapters, but a brief outline is
given below.

The reliability programme must begin at the earliest, conceptual phase of the project. It is at this stage
that fundamental decisions are made, which can significantly affect reliability. These are decisions related
to the risks involved in the specification (performance, complexity, cost, producibility, etc.), development
time-scale, resources applied to evaluation and test, skills available, and other factors.

The shorter the project time-scale, the more important is this need, particularly if there will be few
opportunities for an iterative approach. The activities appropriate to this phase are an involvement in the
assessment of these trade-offs and the generation of reliability objectives. The reliability staff can perform
these functions effectively only if they are competent to contribute to the give-and-take inherent in the trade-off
negotiations, which may be conducted between designers and staff from manufacturing, marketing, finance,
support and customer representatives.
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As the project proceeds from initial study to detail design, the reliability risks are controlled by a formal,
documented approach to the review of design and to the imposition of design rules relating to selection
of components, materials and processes, stress protection, tolerancing, and so on. The objectives at this
stage are to ensure that known good practices are applied, that deviations are detected and corrected, and
that areas of uncertainty are highlighted for further action. The programme continues through the initial
hardware manufacturing and test stages, by planning and executing tests to show up design weaknesses and
to demonstrate achievement of specified requirements and by collecting, analysing and acting upon test and
failure data. During production, QA activities ensure that the proven design is repeated, and further testing
may be applied to eliminate weak items and to maintain confidence. The data collection, analysis and action
process continues through the production and in-use phases. Throughout the product life cycle, therefore, the
reliability is assessed, first by initial predictions based upon past experience in order to determine feasibility
and to set objectives, then by refining the predictions as detail design proceeds and subsequently by recording
performance during the test, production and in-use phases. This performance is fed back to generate corrective
action, and to provide data and guidelines for future products.

The elements of a reliability programme are outlined in documents such as US MIL-STD-785, UK
Defence Standard 00-40 and British Standard 5760 (see Bibliography). The activities are described fully in
subsequent chapters.

1.13 Reliability Economics and Management

Obviously the reliability programme activities described can be expensive. Figure 1.7 is acommonly-described
representation of the theoretical cost—benefit relationship of effort expended on reliability (and production
quality) activities. It shows a U-shaped total cost curve with the minimum cost occurring at a reliability level
somewhat lower than 100 %. This would be the optimum reliability, from the total cost point of view.

W.E. Deming presented a different model in his teaching on manufacturing quality (Deming, 1986). This
is shown in Figure 1.8. He argued that, since less than perfect quality is the result of failures, all of which

Total costs

Quality/Reliability
Programme costs

Cost

Failure costs

Quality/Reliability 100%

Figure 1.7  Reliability and life cycle costs (traditional view).
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Total costs

Development/Production costs

Cost

Failure costs

Quality/Reliability 100%

Figure 1.8 Reliability/Quality and life cycle costs (Based on Deming’s quality vs. cost model).

have causes, we should not be tempted to assume that any level of quality is “optimum”, but should ask ‘what
is the cost of preventing or correcting the causes, on a case by case basis, compared with the cost of doing
nothing?” When each potential or actual cause is analysed in this way, it is usually found that it costs less to
correct the causes than to do nothing. Thus total costs continue to reduce as quality is improved. This simple
picture was the prime determinant of the post-war quality revolution in Japan, and formed the basis for the
philosophy of kaizen (continuous improvement). 100 % quality was rarely achieved, but the levels that were
achieved exceeded those of most Western competitors, and production costs were reduced.

In principle, the same argument applies to reliability: all efforts to improve reliability by identifying and
removing potential causes of failures in service should result in cost savings later in the product life cycle,
giving a net benefit in the longer term. In other words, an effective reliability programme represents an
investment, usually with a large payback over a period of time. Unfortunately it is not easy to quantify the
effects of given reliability programme activities, such as additional design analysis or testing, on achieved
reliability. The costs (including those related to the effects on project schedules) of the activities are known,
and they arise in the short term, but the benefits arise later and are often much less certain. However, achieving
levels of reliability close to 100 % is often not realistic for complex products. Recent research on reliability
cost modeling (Kleyner, 2010) showed that in practical applications the total cost curve is highly skewed to
the right due to the increasing cost and diminishing return on further reliability improvements, as shown in
Figure 1.9. The tight timescales and budgets of modern product development can also impact the amount of
effort that can be applied. On the other hand there is often strong market pressure to achieve near perfect
reliability. See more on cost of reliability in Chapters 14 and 17.

It is important to remember though that while achieving 100 % quality in manufacturing operations, or
100 % reliability in service, is extremely rare in real life applications, especially in high volume production, it
should nevertheless be considered as an ultimate goal for any product development and production programme.

Achieving reliable designs and products requires a totally integrated approach, including design, test,
production, as well as the reliability programme activities. The integrated engineering approach places high
requirements for judgment and engineering knowledge on project managers and team members. Reliability
specialists must play their parts as members of the team.
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Total Cost

Cost

v

0 Quality/Reliability 100%

Figure 1.9 Reliability and life cycle costs (practical applications).

There are three kinds of engineering product, from the perspective of failure prevention:

1 Intrinsically reliable components, which are those that have high margins between their strength and
the stresses that could cause failure, and which do not wear out within their practicable life times. Such
items include nearly all electronic components (if properly applied), nearly all mechanical non-moving
components, and all correct software.

2 Intrinsically unreliable components, which are those with low design margins or which wear out, such as
badly applied components, light bulbs, turbine blades, parts that move in contact with others, like gears,
bearings and power drive belts, and so on.

3 Systems which include many components and interfaces, like cars, dishwashers, aircraft, and so on, so that
there are many possibilities for failures to occur, particularly across interfaces (e.g. inadequate electrical
overstress protection, vibration nodes at weak points, electromagnetic interference, software that contains
errors, and so on).

It is the task of design engineers to ensure that all components are correctly applied, that margins are
adequate (particularly in relation to the possible extreme values of strength and stress, which are often
variable), that wearout failure modes are prevented during the expected life (by safe life design, maintenance,
etc.), and that system interfaces cannot lead to failure (due to interactions, tolerance mismatches, etc.).
Because achieving all this on any modern engineering product is a task that challenges the capabilities of
the very best engineering teams, it is almost certain that aspects of the initial design will fall short of the
‘intrinsically reliable’ criterion. Therefore we must submit the design to analyses and tests in order to show
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not only that it works, but also to show up the features that might lead to failures. When we find out what
these are we must redesign and re-test, until the final design is considered to meet the criterion.

Then the product has to be manufactured. In principle, every one should be identical and correctly made.
Of course this is not achievable, because of the inherent variability of all manufacturing processes, whether
performed by humans or by machines. It is the task of the manufacturing people to understand and control
variation, and to implement inspections and tests that will identify non-conforming product.

For many engineering products the quality of operation and maintenance also influence reliability.

The essential points that arise from this brief and obvious discussion of failures are that:

1 Failures are caused primarily by people (designers, suppliers, assemblers, users, maintainers). Therefore
the achievement of reliability is essentially a management task, to ensure that the right people, skills,
teams and other resources are applied to prevent the creation of failures.

2 Reliability (and quality) specialists cannot by themselves effectively ensure the prevention of failures.
High reliability and quality can be achieved only by effective team working by all involved.

3 There is no fundamental limit to the extent to which failures can be prevented. We can design and build
for ever-increasing reliability.

Deming explained how, in the context of manufacturing quality, there is no point at which further im-
provement leads to higher costs. This is, of course, even more powerfully true when considered over the
whole product life cycle, so that efforts to ensure that designs are intrinsically reliable, by good design,
thorough analysis and effective development testing, can generate even higher pay-offs than improvements
in production quality. The ‘kaizen’ (continuous improvement) principle is even more effective when applied
to up-front engineering.

The creation of reliable products is, therefore, primarily a management task. Guidance on reliability
programme management and costs is covered in Chapter 17.

Questions

1. Define (a) failure rate, and (b) hazard rate. Explain their application to the reliability of components and
repairable systems. Discuss the plausibility of the ‘bathtub curve’ in both contexts.

2. a Explain the theory of component failures derived from the interaction of stress (or load) and strength

distributions. Explain how this theory relates to the behaviour of the component hazard function.
b Discuss the validity of the ‘bathtub curve’ when used to describe the failure characteristics of
non-repairable components.

3. What are the main objectives of a reliability engineering team working on an engineering development
project? Describe the important skills and experience that should be available within the team.

4. Briefly list the most common basic causes of failures of engineering products.

5. [Itis sometimes claimed that increasing quality and reliability beyond levels that have been achieved in
the past is likely to be uneconomic, due to the costs of the actions that would be necessary. Present the
argument against this belief. [llustrate it with an example from your own experience.

6. Describe the difference between repairable and non-repairable items. What kind of effect might
this difference have on reliability? List examples of repairable and non-repairable items in your
everyday life.

7. Explain the difference between reliability and durability and how they can be specified in a product
development programme.
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8. a List the potential economic outcomes of poor reliability, and identify which costs are directly
quantifiable and which are intangible. Explain how they can be minimised, and discuss the extent to
which very high reliability (approaching zero failures) is achievable in practice.

b What are the major factors that might limit the achievement of very high reliability?

9. After processing the existing programme cost data and running a regression model on the previous
projects, the cost of product development and manufacturing (CDM) has been estimated to follow the
equation: CDM = $ 0.8 million +$3.83 million x R? (R is the achieved product reliability at service
life and is expected to be above 90 %). The cost of failure (CF) has been estimated as the sum of fixed
cost of $40000 plus variable cost of $ 150 per failure. The total number of the expected failures is
n x (I — R), where n is the total number of produced units. Considering that the production volume is
expected to be 50 000 units, estimate the optimal target reliability and the total cost of the programme.

10. Select an everyday item (coffee maker, lawnmower, bicycle, mobile phone, CD player, computer,
refrigerator, microwave oven, cooking stove, etc.).
a Discuss the ways this item can potentially fail. What can be done to prevent those failures?
b Based on the Figures 1.3 and 1.4, what would be an example of the load and strength for a
critical component within this item? Do you expect load and strength for this component to be
time-dependent?
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2
Reliability Mathematics

2.1 Introduction

The methods used to quantify reliability are the mathematics of probability and statistics. In reliability work
we are dealing with uncertainty. As an example, data may show that a certain type of power supply fails at a
constant average rate of once per 107 h. If we build 1000 such units, and we operate them for 100 h, we cannot
say with certainty whether any will fail in that time. We can, however, make a statement about the probability
of failure. We can go further and state that, within specified statistical confidence limits, the probability of
failure lies between certain values above and below this probability. If a sample of such equipment is tested,
we obtain data which are called szatistics.

Reliability statistics can be broadly divided into the treatment of discrete functions, continuous functions
and point processes. For example, a switch may either work or not work when selected or a pressure vessel
may pass or fail a test—these situations are described by discrete functions. In reliability we are often
concerned with two-state discrete systems, since equipment is in either an operational or a failed state.
Continuous functions describe those situations which are governed by a continuous variable, such as time
or distance travelled. The electronic equipment mentioned above would have a reliability function in this
class. The distinction between discrete and continuous functions is one of how the problem is treated, and not
necessarily of the physics or mechanics of the situation. For example, whether or not a pressure vessel fails a
test may be a function of its age, and its reliability could therefore be treated as a continuous function. The
statistics of point processes are used in relation to repairable systems, when more than one failure can occur
in a time continuum. The choice of method will depend upon the problem and on the type of data available.

2.2 Variation

Reliability is influenced by variability, in parameter values such as resistance of resistors, material properties,
or dimensions of parts. Variation is inherent in all manufacturing processes, and designers should understand
the nature and extent of possible variation in the parts and processes they specify. They should know how to
measure and control this variation, so that the effects on performance and reliability are minimized.

Variation also exists in the environments that engineered products must withstand. Temperature, mechanical
stress, vibration spectra, and many other varying factors must be considered.

Practical Reliability Engineering, Fifth Edition. Patrick D. T. O’Connor and Andre Kleyner.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Statistical methods provide the means for analysing, understanding and controlling variation. They can
help us to create designs and develop processes which are intrinsically reliable in the anticipated environments
over their expected useful lives.

Of course, it is not necessary to apply statistical methods to understand every engineering problem, since
many are purely deterministic or easily solved using past experience or information available in sources
such as databooks, specifications, design guides, and in known physical relationships such as Ohm’s law.
However, there are also many situations in which appropriate use of statistical techniques can be very effective
in optimizing designs and processes, and for solving quality and reliability problems.

2.2.1 A Cautionary Note

Whilst statistical methods can be very powerful, economic and effective in reliability engineering applications,
they must be used in the knowledge that variation in engineering is in important ways different from variation
in most natural processes, or in repetitive engineering processes such as repeated, in-control machining or
diffusion processes. Such processes are usually:

Constant in time, in terms of the nature (average, spread, etc.) of the variation.
Distributed in a particular way, describable by a mathematical function known as the normal distribution
(which will be described later in this chapter).

In fact, these conditions often do not apply in engineering. For example:

— A component supplier might make a small change in a process, which results in a large change (better or
worse) in reliability. The change might be deliberate or accidental, known or unknown. Therefore the use
of past data to forecast future reliability, using purely statistical methods, might be misleading.

— Components might be selected according to criteria such as dimensions or other measured parameters.
This can invalidate the normal distribution assumption on which much of the statistical method is based.
This might or might not be important in assessing the results.

— A process or parameter might vary in time, continuously or cyclically, so that statistics derived at one
time might not be relevant at others.

— Variation is often deterministic by nature, for example spring deflection as a function of force, and it
would not always be appropriate to apply statistical techniques to this sort of situation.

— Variation in engineering can arise from factors that defy mathematical treatment. For example, a thermostat
might fail, causing a process to vary in a different way to that determined by earlier measurements, or an
operator or test technician might make a mistake.

— Variation can be discontinuous. For example, a parameter such as a voltage level may vary over a range,
but could also go to zero.

These points highlight the fact that variation in engineering is caused to a large extent by people, as
designers, makers, operators and maintainers. The behaviour and performance of people is not as amenable
to mathematical analysis and forecasting as is, say, the response of a plant crop to fertilizer or even weather
patterns to ocean temperatures. Therefore the human element must always be considered, and statistical
analysis must not be relied on without appropriate allowance being made for the effects of factors such as
motivation, training, management, and the many other factors that can influence reliability.

Finally, it is most important to bear in mind, in any application of statistical methods to problems in
science and engineering, that ultimately all cause and effect relationships have explanations, in scientific
theory, engineering design, process or human behaviour, and so on. Statistical techniques can be very useful
in helping us to understand and control engineering situations. However, they do not by themselves provide
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explanations. We must always seek to understand causes of variation, since only then can we really be in
control. See the quotations on the flyleaf, and think about them.

2.3 Probability Concepts

Any event has a probability of occurrence, which can be in the range 0—1. A zero probability means that the
event will not occur; a probability of 1 means that it will occur. A coin has a 0.5 (even) probability of landing
heads, and a die has a 1/6 probability of giving any one of the six numbers. Such events are independent,
that is, the coin and the die logically have no memory, so whatever has been thrown in the past cannot affect
the probability of the next throw. No ‘system’ can beat the statistics of these situations; waiting for a run of
blacks at roulette and then betting on reds only appears to work because the gamblers who won this way talk
about it, whilst those who lost do not.

With coins, dice and roulette wheels we can predict the probability of the outcome from the nominal nature
of the system. A coin has two sides, a die six faces, a roulette wheel equal numbers of reds and blacks.
Assuming that the coin, die and wheel are fair, these outcomes are also unbiased, that is, they are all equally
probable. In other words, they occur randomly.

With many systems, such as the sampling of items from a production batch, the probabilities can only be
determined from the statistics of previous experience.

We can define probability in two ways:

1 If an event can occur in N equally likely ways, and if the event with attribute A can happen in n of these
ways, then the probability of A occurring is

P(A) = —
N

2 If, in an experiment, an event with attribute A occurs n times out of N experiments, then as n becomes
large, the probability of event A approaches n/N, that is,

n
P = lim (1)

The first definition covers the cases described earlier, that is, equally likely independent events such
as rolling dice. The second definition covers typical cases in quality control and reliability. If we test
100 items and find that 30 are defective, we may feel justified in saying that the probability of finding a
defective item in our next test is 0.30, or 30 %.

However, we must be careful in making this type of assertion. The probability of 0.30 of finding a defective
item in our next test may be considered as our degree of belief, in this outcome, limited by the size of the
sample. This leads to a third, subjective, definition of probability. If, in our tests of 100 items, seven of the
defectives had occurred in a particular batch of ten and we had taken corrective action to improve the process
so that such a problem batch was less likely to occur in future, we might assign some lower probability to
the next item being defective. This subjective approach is quite valid, and is very often necessary in quality
control and reliability work. Whilst it is important to have an understanding of the rules of probability, there
are usually so many variables which can affect the properties of manufactured items that we must always
keep an open mind about statistically derived values. We must ensure that the sample from which statistics
have been derived represents the new sample, or the overall population, about which we plan to make an
assertion based upon our sample statistics.
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Figure 2.1 Samples with defectives (black squares).

A sample represents a population if all the members of the population have an equal chance of being
sampled. This can be achieved if the sample is selected so that this condition is fulfilled. Of course in
engineering this is not always practicable; for example, in reliability engineering we often need to make an
assertion about items that have not yet been produced, based upon statistics from prototypes.

To the extent that the sample is not representative, we will alter our assertions. Of course, subjective
assertions can lead to argument, and it might be necessary to perform additional tests to obtain more data to
use in support of our assertions. If we do perform more tests, we need to have a method of interpreting the
new data in relation to the previous data: we will cover this aspect later.

The assertions we can make based on sample statistics can be made with a degree of confidence which
depends upon the size of the sample. If we had decided to test ten items after introducing a change to the
process, and found one defective, we might be tempted to assert that we have improved the process, from
30 % defectives being produced to only 10 %. However, since the sample is now much smaller, we cannot
make this assertion with as high confidence as when we used a sample of 100. In fact, the true probability of
any item being defective might still be 30 %, that is, the population might still contain 30 % defectives.

Figure 2.1 shows the situation as it might have occurred, over the first 100 tests. The black squares indicate
defectives, of which there are 30 in our batch of 100. If these are randomly distributed, it is possible to pick a
sample batch of ten which contains fewer (or more) than three defectives. In fact, the smaller the sample, the
greater will be the sample-to-sample variation about the population average, and the confidence associated
with any estimate of the population average will be accordingly lower. The derivation of confidence limits is
covered later in this chapter.

2.4 Rules of Probability

In order to utilize the statistical methods used in reliability engineering, it is necessary to understand the basic
notation and rules of probability. These are:

1 The probability of obtaining an outcome A is denoted by P(A), and so on for other outcomes.
2 The joint probability that A and B occur is denoted by P(AB).
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The probability that A or B occurs is denoted by P(A + B).

The conditional probability of obtaining outcome A, given that B has occurred, is denoted by
P (A1B).

The probability of the complement, that is, of A not occurring, is P(A)=1-P(A)

If (and only if) events A and B are independent, then

P(A|B) = P(A|B) = P(A)
and
P(B|A) = P(B|A) = P(B) 2.1

that is, P(A) is unrelated to whether or not B occurs, and vice versa.
The joint probability of the occurrence of two independent events A and B is the product of the individual
probabilities:

P(AB) = P(A)P(B) 2.2)

This is also called the product rule or series rule. It can be extended to cover any number of
independent events. For example, in rolling a die, the probability of obtaining any given sequence of
numbers in three throws is

1 1

X - = —
6 216

1 1
- X = X
6 6

If events A and B are dependent, then
P(AB) = P(A)P(B|A) = P(B)P(A|B) 2.3)
that is, the probability of A occurring times the probability of B occurring given that A has already

occurred, or vice versa.
If P(A) # 0, (2.3) can be rearranged to

P(B|A) = P(AB) 24
P(A)
The probability of any one of two events A or B occurring is
P(A+B)= P(A)+ P(B)— P(AB) (2.5)
The probability of A or B occurring, if A and B are independent, is
P(A+B)=P(A)+ P(B) — P(A)P(B) (2.6)

The derivation of this equation can be shown by considering the system shown in Figure 2.2, in which
either A or B, or A and B, must work for the system to work. If we denote the system success probability



24

11

12

13

Chapter 2 Reliability Mathematics

as Ps, then the failure probability, P = 1 — P;. The system failure probability is the joint probability of
A and B failing, that is,

Py =[1 — P(A][1 — P(B)]
=1—-P(A)— PB)+ P(A)P(B)
Pi=1-P=PA+B)=PA)+ PB)— P(A)PB)

If events A and B are mutually exclusive, that is, A and B cannot occur simultaneously, then
P(AB)=0
and
P(A+B) = P(A)+ P(B) (2.7)

If multiple, mutually exclusive probabilities of outcomes B; jointly give a probability of outcome A,
then

P(A)=_ P(AB;))=)_ P(A|B))P(B;) (2.8)

Rearranging Eq. (2.3)
P(AB) = P(A)P(B|A) = P(B)P(A|B)

we obtain

P(A)P(B|A
P(AJB) = % 2.9

This is a simple form of Bayes’ theorem. A more general expression is

_ P(A)P(BIA)
PO = IR PED @19

where E; is the ith event.

Figure 2.2 Dual redundant system.
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Example 2.1

The reliability of a missile is 0.85. If a salvo of two missiles is fired, what is the probability of at least one
hit? (Assume independence of missile hits.)
Let A be the event ‘first missile hits’ and B the event ‘second missile hits’. Then

P(A) = P(B) = 0.85
P(A) = P(B)=0.15

There are four possible, mutually exclusive outcomes, AB, AB, AB; A B. The probability of both missing,
from Eq. (2.2), is

P(A)P(B) = P(AB)
=0.15* = 0.0225

Therefore the probability of at least one hit is
P, =1-0.0225 = 0.9775
We can derive the same result by using Eq. (2.6):

P(A +B) = P(A) + P(B) — P(A)P(B)
=0.85+ 0.85 — 0.85> = 0.9775

Another way of deriving this result is by using the sequence tree diagram:

P(AB) = P(A)P(B) = 0.85x0.85 = 0.7225

P(AB) = P(A)P(B) = 0.85x0.15 = 0.1275

P(AB) = P(A)P(B) = 0.15x0.85 = 0.1275

P(AB) = P(A)P(B) = 0.15x0.15 = 0.0225

The probability of a hit is then derived by summing the products of each path which leads to at least one
hit. We can do this since the events defined by each path are mutually exclusive.

P(AB) + P(AB) + P(AB) = 0.9775

(Note that the sum of all the probabilities is unity.)
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Example 2.2

In Example 2.1 the missile hits are not independent, but are dependent, so that if the first missile fails the
probability that the second will also fail is 0.2. However, if the first missile hits, the hit probability of the
second missile is unchanged at 0.85. What is the probability of at least one hit?

P(A) =0.85
P(B|A) = 0.85
P(BIA) =0.15
P(BIA) =02
P(B|A) = 0.8

The probability of at least one hit is
P(AB) + P(AB) + P(BA)

Since A, B and AB are independent,

P(AB) = P(A)P(B)
= 0.85 x 0.85 = 0.7225

and

P(AB) = P(A)P(B)
=0.85 x 0.15 =0.1275

Since A and B are dependent, from Eq. (2.3),

P(AB) = P(A)P(B|A)
=0.15%x0.8=0.12

and the sum of these probabilities is 0.97.
This result can also be derived by using a sequence tree diagram:

Two hits

One hit
One hit

No hits
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As in Example 2.1, the probability of at least one hit is calculated by adding the products of each path
leading to at least one hit, that is,
P(A)P(B) + P(A)P(B) + P(A)P(B)
= (0.85 x 0.85) 4 (0.85 x 0.15) 4 (0.15 x 0.80) = 0.97

Example 2.3

In the circuit shown, the probability of any switch being closed is 0.8 and all events are independent. (a) What
is the probability that a circuit will exist? (b) Given that a circuit exists, what is the probability that switches
a and b are closed?

Let the events that a, b, ¢c and d are closed be A, B, C and D. Let X denote the event that the circuit exists.

a b

(a) X=AB + (C + D)

P(X) = P(AB) + P(C + D) — P(AB)P(C + D)
P(AB) = P(A)P(B)
= 0.8 x 0.8 = 0.64
P(C+ D)= P(C)+ P(D)— P(CO)P(D)
=0.84 0.8 —0.64 = 0.96

Therefore
P(X) =0.64 4+ 0.96 — (0.96 x 0.64) = 0.9856
(b) From Eq. (2.4),

P(ABX)

A and B jointly give X. Therefore, from Eq. (2.8),

P(ABX) = P(AB)

So
P(AB[X) = P(AB) _ P(A)P(B)
P(X) P(X)

0808

= 0.6494
0.9856
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Example 2.4

A test set has a 98 % probability of correctly classifying a defective item and a 4 % probability of classifying
a good item as defective. If in a batch of items tested 3 % are actually defective, what is the probability that
when an item is classified as defective, it is truly defective?

Let D represent the event that an item is defective and C represent the event that an item is classified
defective. Then

P(D) = 0.03
P(C|D) = 0.98
P(C|D) = 0.04

We need to determine P(DIC). Using Eq. (2.10),

PODIC) = P(D)P(ClD)_ _
P(C|D)P(D) + P(C|D)P(D)

B (0.03)(0.98)

~(0.98)(0.03) + (0.04)(0.97)

=0.43

This indicates the importance of a test equipment having a high probability of correctly classifying good
items as well as bad items.

More practical applications of the Bayesian statistical approach to reliability can be found in Martz and
Waller (1982) or Kleyner et al. (1997).

2.5 Continuous Variation

The variation of parameters in engineering applications (machined dimensions, material strengths, transistor
gains, resistor values, temperatures, etc.) are conventionally described in two ways. The first, and the simplest,
is to state maximum and minimum values, or tolerances. This provides no information on the nature, or shape,
of the actual distribution of values. However, in many practical cases, this is sufficient information for the
creation of manufacturable, reliable designs.

The second approach is to describe the nature of the variation, using data derived from measurements.
In this section we will describe the methods of statistics in relation to describing and controlling variation
in engineering.

If we plot measured values which can vary about an average (e.g. the diameters of machined parts or the
gains of transistors) as a histogram, for a given sample we may obtain a representation such as Figure 2.3(a).

In this case 30 items have been measured and the frequencies of occurrence of the measured values are
as shown. The values range from 2 to 9, with most items having values between 5 and 7. Another random
sample of 30 from the same population will usually generate a different histogram, but the general shape
is likely to be similar, for example, Figure 2.3(b). If we plot a single histogram showing the combined
data of many such samples, but this time show the values in measurement intervals of 0.5, we get Figure
2.3(c). Note that now we have used a percentage frequency scale. We now have a rather better picture of the
distribution of values, as we have more information from the larger sample. If we proceed to measure a large
number and we further reduce the measurement interval, the histogram tends to a curve which describes the
population probability density function (pdf) or simply the distribution of values. Figure 2.4 shows a general
unimodal probability distribution, f(x) being the probability density of occurrence, related to the variable x.
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Figure 2.3 (a) Frequency histogram of a random sample, (b) frequency histogram of another random sample
from the same population, (c) data of many samples shown with measurement intervals of 0.5.

The value of x at which the distribution peaks is called the mode. Multimodal distributions are encountered in
reliability work as well as unimodal distributions. However, we will deal only with the statistics of unimodal
distributions in this book, since multimodal distributions are usually generated by the combined effects of

separate unimodal distributions.
The area under the curve is equal to unity, since it describes the total probability of all possible values of
x, as we have defined a probability which is a certainty as being a probability of one. Therefore

/ f(x)dx =1 (2.11)
—0Q
The probability of a value falling between any two values x; and x, is the area bounded by this interval,

that is,

Px; <x <x)= /Xz f(x)dx (2.12)

X1

To describe a pdf we normally consider four aspects:

—_

The central tendency, about which the distribution is grouped.

2 The spread, indicating the extent of variation about the central tendency.

3 The skewness, indicating the lack of symmetry about the central tendency. Skewness equal to zero is a
characteristic of a symmetrical distribution. Positive skewness indicates that the distribution has a longer
tail to the right (see for example Figure 2.5) and negative skewness indicates the opposite.

pdf, f(x)

X

Figure 2.4 Continuous probability distribution.
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Mode
~Median

N\ Mean

X

Figure 2.5 Measures of central tendency.

4 The kurtosis, indicating the ‘peakedness’ of the pdf In general terms kurtosis characterizes the relative
peakedness or flatness of a distribution compared to the normal distribution. Positive kurtosis indicates a
relatively peaked distribution. Negative kurtosis indicates a relatively flat distribution.

2.5.1 Measures of Central Tendency

For a sample containing n items the sample mean is denoted by X:

Xi

=y = (2.13)

The sample mean can be used to estimate the population mean, which is the average of all possible outcomes.
For a continuous distribution, the mean is derived by extending this idea to cover the range —oo to + co.

The mean of a distribution is usually denoted by 1. The mean is also referred to as the location parameter,
average value or expected value, E(x).

w= /OO xf(x)dx (2.14)

o0

This is analogous to the centre of gravity of the pdf The estimate of a population mean from sample data is
denoted by 1t.

Other measures of central tendency are the median, which is the mid-point of the distribution, that is,
the point at which half the measured values fall to either side, and the mode, which is the value (or values)
at which the distribution peaks. The relationship between the mean, median and mode for a right-skewed
distribution is shown in Figure 2.5. For a symmetrical distribution, the three values are the same, whilst for a
left-skewed distribution the order of values is reversed.

2.5.2 Spread of a Distribution

The spread, or dispersion, that is, the extent to which the values which make up the distribution vary, is
measured by its variance. For a sample size n the variance, Var (x) or E(x — X)?, is given by

3 (x5 — 5)?

Var(x) = E(x — ¥)? = ﬂT (2.15)
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Where sample variance is used to estimate the population variance, we use (n — 1) in the denominator of
Eq. (2.15) instead of n, as it can be shown to provide a better estimate. The estimate of population variance
from a sample is denoted 6% where

" (x —%)?

~2
= _— 2.16
“ ; n—1 ( )
The population variance o2, for a finite population N, is given by
N
> (i —p)?
2 i=1
= 2.17
o N (2.17)
For a continuous distribution it is:
oo
o’ = / (x — w)*f(x) dx (2.18)

o is called the standard deviation (SD) and is frequently used in practice instead of the variance. It is also
referred to as the scale parameter. o is the second moment about the mean and is analogous to a radius
of gyration.

The third and fourth moments about the mean give the skewness and kurtosis mentioned before. Since we
will not make use of these parameters in this book, the reader is referred to more advanced statistical texts
for their derivation (e.g. Hines and Montgomery, 1990).

2.5.3 The Cumulative Distribution Function

The cumulative distribution function (cdf), F(x), gives the probability that a measured value will fall between
—o0 and x:

F(x) = /X f(x)dx (2.19)

—00

Figure 2.6 shows the typical ogive form of the cdf with F(x) — 1 as x — oo.

Cdf, F(x)

X

Figure 2.6 Typical cumulative distribution function (cdf).
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2.5.4 Reliability and Hazard Functions

In reliability engineering we are concerned with the probability that an item will survive for a stated interval
(e.g. time, cycles, distance, etc.), that is, that there is no failure in the interval (0 to x). This is the reliability,
and it is given by the reliability function R(x). From this definition, it follows that

X

R(x) = 1 —F(x):/oof(x)dxz 1 —/ £(x) dx (2.20)

—00

The hazard function or hazard rate h(x) is the conditional probability of failure in the interval x to
(x + dx), given that there was no failure by x:

() f(x)
h(x) = R(x) “T-Fo Foo) (2.21)
The cumulative hazard function H(x) is given by
Ho = [ hde= [ —8 222
(x)—/_ (x) f et (2.22)

Figure 2.7 illustrates the relationship between the failure probability density function (pdf), reliability R(t),
and failure function F(t). At any point of time the area under the curve left of # would represent the fraction
of the population expected to fail F(t) and area to the right the fraction expected to survive R(t).

Please note, that in engineering we do not usually encounter measured values below zero and the lower
limit of the definite integral is then 0.

2.5.5 Calculating Reliability Using Microsoft Excel® Functions

In the past decades the Microsoft Excel® spreadsheet software became a widely utilized tool to perform
a multitude of engineering and non-engineering tasks including statistical calculations. This book will
illustrate how to perform some statistical analysis including reliability calculations utilizing Excel spreadsheet
functions. Excel applications will cover both continuous and discrete statistical distributions.

Figure 2.7 Probability Density Function (pdf) and its application to reliability.
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2.6 Continuous Distribution Functions

2.6.1 The Normal (or Gaussian) Distribution

By far the most widely used ‘model’ of the nature of variation is the mathematical function known as the
normal (or Gaussian) distribution. The normal data distribution pattern occurs in many natural phenomena,
such as human heights, weather patterns, and so on. However, there are limitations inherent in using this
model in many engineering applications (see the comments in Section 2.8.1).

The normal pdf is given by

1 1 (x—p\?
)=~ mew [_E (x ~ “) } (2.23)

where w is the location parameter, equal to the mean. The mode and the median are coincident with the mean,
as the pdf is symmetrical. o is the scale parameter, equal to the SD.

A population which conforms to the normal distribution has variations which are symmetrically dis-
posed about the mean (Figure 2.8) (i.e. the skewness is zero). Since the tails of the normal distribution are
symmetrical, a given spread includes equal values in the left-hand and right-hand tails.

For normally distributed variables, about 68 % of the population fall between £ 1 SD. About 95 % fall
between + 2 SD, and about 99.7 % between & 3 SD.

An important reason for the wide applicability of the normal distribution is the fact that, whenever several
random variables are added together, the resulting sum tends to normal regardless of the distributions of the
variables being added. This is known as the central limit theorem. It justifies the use of the normal distribution
in many engineering applications, including quality control. The normal distribution is a close fit to most
quality control and some reliability observations, such as the sizes of machined parts and the lives of items
subject to wearout failures. Appendix 1 gives values for ®(z), the standardized normal cdf, that is, u = 0

Probability

1 1 1 : 1 1 1
4 3 2 1 1 2 3 4
Mean Variable

x standard deviation ¢

Figure 2.8 The normal (Gaussian) distribution.
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and o = 1. z represents the number of SDs displacement from the mean. Any normal distribution can be
evaluated from the standardized normal distribution by calculating the standardized normal variate z, where

X =
=
o

and finding the appropriate value of ® (z).
The pdf of a normal distribution with parameters p and o can be calculated using Excel as

f(x) = NORMDIST(x, i, o, FALSE) and reliability as R(x) =1-NORMDIST(x, i, o, TRUE). The standard-
ized normal cdf can be calculated as ® (z) = NORMSDIST(z).

Example 2.5

The life of an incandescent lamp is normally distributed, with mean 1200h and SD 200 h. What is the
probability that a lamp will last (a) at least 800 h? (b) at least 1600 h?

a z=(x—w)lo, thatis, the distance of x from u expressed as a number of SDs. Then

_800-1200 _
‘T T200

Appendix 1 shows that the probability of a value not exceeding 2 SD is 0.977. Figure 2.9(a) shows this
graphically, on the pdf (the shaded area).
b The probability of a lamp surviving more than 1600 h is derived similarly:

1600 — 1200
=2 osp
< 200

This represents the area under the pdf curve beyond the +2 SD point. (Figure 2.9(a)) or 1 — (area under
the curve to the left of +2 SD) on the cdf (Figure 2.9(b)). Therefore the probability of surviving beyond
1600his (1 - 0.977) = 0.023.

The answers can also be obtained using Excel functions as follows:

Solution for (a): R(800 hours) = 1-NORMDIST(800,1200,200,TRUE) = 0.9772
Solution for (b): R(1600) = 1-NORMDIST(1600,1200,200,TRUE) = 0.0228

1.0
(a) (b)
& =
= o 05
© ©
o O
800 1200 1600  «x " 800 1200 1600 x
3 2 140 1 2 3 z 3 2 1 0 1 2 z

Figure 2.9 (a) The pdf f(x) versus x; (b) the cdf F(x) versus x (see Example 2.5).
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2.6.2 The Lognormal Distribution

The lognormal distribution is based on the normal distribution. A random variable is lognormally distributed
if the logarithm of the random variable is normally distributed. The lognormal distribution is a more versatile
distribution than the normal as it has a range of shapes, and therefore is often a better fit to reliability data, such
as for populations with wearout characteristics. Also, it does not have the normal distribution’s disadvantage
of extending below zero to —oo. Outside reliability applications the lognormal is often used to model usage
data, such as vehicle mileage per year, count of switch operations, repair time of a maintained system, and so
on. The lognormal pdf is

! ex ! <lnx—u>2 (forx > 0)
1 | lf(lnx—n .
foy = | ox@o 2P| T2\ T = (2.24)

0 (forx < 0)

As mentioned before, it is the normal distribution with In x as the variate. The mean and SD of the lognormal
distribution are given by

2
SD = [exp (2 + 207) — exp 2u + 0)]'/?

02
Mean = exp (M + —)

where 1 and o are the mean and SD of the In data.

When 1 >> o, the lognormal distribution approximates to the normal distribution. The normal and lognormal
distributions describe reliability situations in which the hazard rate increases from x = 0 to a maximum and
then decreases.

The cdf and reliability of the system following lognormal distribution with parameters ; and o can also
be calculated using Excel functions.

For example, R(x) = 1-LOGNORMDIST(x, i, o).

2.6.3 The Exponential Distribution

The exponential distribution describes the situation wherein the hazard rate is constant. A Poisson process
(Section 2.10.2) generates a constant hazard rate. The pdf is

a exp(—ax) (forx >0)
f= 0 (forx < 0) (22

This is an important distribution in reliability work, as it has the same central limiting relationship to life
statistics as the normal distribution has to non-life statistics. It describes the constant hazard rate situation.
As the hazard rate is often a function of time, we will denote the independent variable by 7 instead of x. The
constant hazard rate is denoted by A. The mean life, or mean time to failure (MTTF), is 1/A. The pdf is then
written as

f(f) = A exp (—At) (2.26)
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The probability of no failures occurring before time 7 is obtained by integrating Eq. (2.26) between 0 and ¢
and subtracting from 1:

R(t)=1— / £(£)dt = exp(—At) (2.27)
0

The Excel functions for the exponential distribution are: pdf f(t) = EXPONDIST(t, A, FALSE) and
reliability R(t) =1-EXPONDIST(t, A, TRUE).

R(?) is the reliability function (or survival probability). For example, the reliability of an item with an
MTTF of 500 h over a 24 h period is

—24
R(24) = exp [ — ) = 0.953 or = 1-EXPONDIST(24, 1/500, TRUE)
500

For items which are repaired, X is called the failure rate, and 1/X is called the mean time between
failures (MTBF) (also referred as 6). Please note from Eq. (2.27) that 63.2 % of items will have failed by
t = MTBF.

2.6.4 The Gamma Distribution

In statistical terms the gamma distribution represents the sum of n exponentially distributed random variables.
The gamma distribution is a flexible life distribution model that may offer a good fit to some sets of failure
data. In reliability terms, it describes the situation when partial failures can exist, that is, when a given number
of partial failure events must occur before an item fails, or the time to the ath failure when time to failure is
exponentially distributed. The pdf is

L()Lx)“_1 exp(—Aix) (forx >0)

f(x)={ '@
0 (forx < 0)
a
w=< (2.28)
al?
o =—
A

where A is the failure rate (complete failures) and a the number of partial failures per complete failure, or
events to generate a failure. I'(a) is the gamma function:

I'(a) = / oox”—‘ exp(—x)dx (2.29)
0

When (a — 1) is a positive integer, ['(a) = (a — 1)! This is the case in the partial failure situation. The
exponential distribution is a special case of the gamma distribution, when a = 1, that is,

f(x) = Aexp(—Xix)
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The gamma distribution can also be used to describe a decreasing or increasing hazard rate. When a < 1,
h(x) will decrease whilst for a > 1, h(x) increases.
Utilizing Excel functions, pdf f(x) = GAMMADIST(x, a, »,FALSE) and reliability

R(x) = -GAMMADIST(x, a, |, TRUE)

2.6.5 The x2 Distribution

The x? (chi-square) distribution is a special case of the gamma distribution, where A = %, and v = a/2, where
v is called the number of degrees of freedom and must be a positive integer. This permits the use of the x?
distribution for evaluating reliability situations, since the number of failures, or events to failure, will always
be positive integers. The x? distribution is really a family of distributions, which range in shape from that of
the exponential to that of the normal distribution. Each distribution is identified by the degrees of freedom.

In statistical theory, the x? distribution is very important, as it is the distribution of the sums of squares
of n, independent, normal variates. This allows it to be used for statistical testing, goodness-of-fit tests and
evaluating confidence. These applications are covered later. The cdf for the x? distribution is tabulated for
a range of degrees of freedom in Appendix 2. The Excel function corresponding to Appendix 2 tables is =
CHIINV(«, v) with « being a risk factor.

2.6.6 The Weibull Distribution

The Weibull distribution is arguably the most popular statistical distribution used by reliability engineers. It
has the great advantage in reliability work that by adjusting the distribution parameters it can be made to
fit many life distributions. When Walloddi Weibull delivered his famous American paper in 1951, the first
reaction to his statistical distribution was negative, varying from skepticism to rejection. However the US Air
Force recognized the merit of Weibull’s method and funded his research until 1975.

The Weibull pdf is (in terms of time 7)

B (-1 |: <t>ﬂi|
— exp|—| — (for t > 0)
fy=1{ 1" U (2.30)

0 (for t < 0)

The corresponding reliability function is

()
R(t) = exp | — <;) 2.31)

-
n

The hazard rate is

1
Mean or MTTF: p =nl’ <E + 1>
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2 1 2
Standard deviation: o = n\/I‘ <B + 1> -Tr (E + 1)

B is the shape parameter and 1 is the scale parameter, or characteristic life—it is the life at which 63.2 %
of the population will have failed (see Eq. (2.31) substituting = n).
When g = 1, the exponential reliability function (constant hazard rate) results, with

n = mean life (1/A1).

When g8 < 1, we get a decreasing hazard rate reliability function.

When g > 1, we get an increasing hazard rate reliability function.

When g = 3.5, for example, the distribution approximates to the normal distribution. Thus the Weibull
distribution can be used to model a wide range of life distributions characteristic of engineered products.
The Excel function for pdf is f(t) = WEIBULLC(z, B, n, FALSE) and reliability R(t) = 1-WEIBULL(z, B, »,
TRUE).

So far we have dealt with the two-parameter Weibull distribution. If, however, failures do not start at
t = 0, but only after a finite time y, then the Weibull reliability function takes the form

NN
R(t) = exp [— <t ny)) } (2.32)

that is, a three-parameter distribution. y is called the failure free time, location parameter or minimum life.
More on the Weibull distribution will be presented in Chapter 3.

2.6.7 The Extreme Value Distributions

In reliability work we are often concerned not with the distribution of variables which describe the bulk
of the population but only with the extreme values which can lead to failure. For example, the mechanical
properties of a semiconductor wire bond are such that under normal operating conditions good wire bonds
will not fracture or overheat. However, extreme high values of electrical load or extreme low values of bond
strength can result in failure. In other words, we are concerned with the implications of the tails of the
distributions in load—strength interactions. However, we often cannot assume that, because a measured value
appears to be, say, normally distributed, that this distribution necessarily is a good model for the extremes.
Also, few measurements are likely to have been made at these extremes. Extreme value statistics are capable
of describing these situations asymptotically.

Extreme value statistics are derived by considering the lowest or highest values in each of a series of equal
samples. For example, consider the sample data in Table 2.1, taken randomly from a common population.
The overall data can be plotted as shown in Figure 2.10 as f(x). However, if we plot separately the lowest
values and the highest values in each sample, they will appear as g (x) and gg(x). gL (x) is the extreme value
distribution of the lowest extreme whilst gy (x) is the extreme value distribution of the highest extreme in each
sample. For many distributions the distribution of the extremes will be one of three types:

Type I—also known as the extreme value or Gumbel distribution.
Type II—also known as the log extreme value distribution.
Type III—for the lowest extreme values. This is the Weibull distribution.



Table 2.1 Sample data taken randomly from a common population.

Continuous Distribution Functions

Sample Data
1 30 31 41 29 39 36 38 30
2 31 34 23 27 29 32 35 35
3 26 33 35 32 34 29 30 34
4 27 33 30 31 31 36 28 40
5 18 39 25 32 31 34 27 37
6 22 36 42 27 33 27 31 31
7 39 35 32 39 32 27 28 32
8 33 34 32 30 34 35 33 28
9 32 32 37 25 33 35 35 19
10 28 32 36 37 17 31 42 32
11 26 22 32 23 33 36 36 31
12 36 31 45 24 30 27 24 27

Figure 2.10 Extreme value distributions.

39
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2.6.7.1 Extreme Value Type I

The type I extreme value distributions for maximum and minimum values are the limiting models for the right

and left tails of the exponential types of distribution, where this is defined as any distribution whose cumulative

probability approaches unity at a rate which is equal to or greater than that for the exponential distribution.

This includes most reliability distributions, such as the normal, lognormal and exponential distributions.
The probability density functions for maximum and minimum values, respectively, are

1 1 1
fx) = —exp {—;(x — ) —exp [—g(x - M)“ (2.33)

1 1 1
fx) = —exp {;(x — [1) — exp [;(x - M)i| } (2.34)

The reduced variate is given by

y:
o

Substituting in Egs. (2.33) and (2.34), we can derive the cdf in terms of the reduced variate y.

For maximum values:

y
F(y) = / exp{—Lx + exp ()1} dx = exp[— exp (—)] (2.35)

o0

For minimum values:

F(y) =1—exp[—exp(y)] (2.36)

The distribution of maximum values is right-skewed and the distribution of minimum values is left-skewed.
The hazard function of maximum values approaches unity with increasing x, whilst that for minimum values
increases exponentially.

For maximum values:

Hevp = 1+ 0.5770
For minimum values:

Hevn = 4 — 0.57T0
The standard deviation ., is 1.2830 in both cases.

2.6.7.2 Extreme Value Type 11

The extreme type II distribution does not play an important role in reliability work. If the logarithms of the
variables are extreme value distributed, then the variable is described by the extreme value type II distribution.
Thus its relationship to the type I extreme value distribution is analogous to that of the lognormal to the
normal distribution.
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2.6.7.3 Extreme Value Type 111

The type III extreme value distribution for minimum values is the limiting model for the left-hand tail for
distributions which are bounded at the left. In fact, the Weibull distribution is the type III extreme value
distribution for minimum values, and although it was initially derived empirically, its use for describing the
strength distribution of materials has been justified using extreme value theory.

2.6.7.4 The Extreme Value Distributions Related to Load and Strength

The type I extreme value distribution for maximum values is often an appropriate model for the occurrence
of load events, when these are not bounded to the right, that is, when there is no limiting value.

It is well known that engineering materials possess strengths well below their theoretical capacity, mainly
due to the existence of imperfections which give rise to non-uniform stresses under load. In fact, the strength
will be related to the effect of the imperfection which creates the greatest reduction in strength, and hence the
extreme value distribution for minimum values suggests itself as an appropriate model for strength.

The strength, and hence the time to failure, of many types of product can be considered to be dependent
upon imperfections whose extent is bounded, since only very small imperfections will escape detection by
inspection or process control, justifying use of a type III (Weibull) model. On the other hand, a type I model
might be more representative of the strength of an item which is mass-produced and not 100 % inspected, or
in which defects can exist whose extent is not bounded, but which are not detected, for example, a long wire,
whose strength will then be a function of length.

For a system consisting of many components in series, where the system hazard rate is decreasing from
t =0 (i.e. bounded) a type III (Weibull) distribution will be a good model for the system time to failure.

2.7 Summary of Continuous Statistical Distributions

Figure 2.11 is a summary of the continuous distributions described above.

2.8 Variation in Engineering

Every practical engineering design must take account of the effects of the variation inherent in parameters,
environments, and processes. Variation and its effects can be considered in three categories:

1 Deterministic, or causal, which is the case when the relationship between a parameter and its effect
is known, and we can use theoretical or empirical formulae, for example, we can use Ohm’s law to
calculate the effect of resistance change on the performance of a voltage divider. No statistical methods
are required. The effects of variation are calculated by inserting the expected range of values into
the formulae.

2 Functional, which includes relationships such as the effect of a change of operating procedure, human
mistakes, calibration errors, and so on. There are no theoretical formulae. In principle these can be
allowed for, but often are not, and the cause and effect relationships are not always easy to identify
or quantify.

3 Random. These are the effects of the inherent variability of processes and operating conditions. They can
be considered to be the variations that are left unexplained when all deterministic and functional causes
have been eliminated. For example, a machining process that is in control will nevertheless produce
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parts with some variation in dimensions, and random voltage fluctuations can occur on power supplies
due to interference. Note that the random variations have causes. However, it is not always possible or
practicable to predict how and when the cause will arise. The statistical models described above can be
used to describe random variations, subject to the limitations discussed later.

Variation can also be progressive, for example due to wear, material fatigue, change of lubricating properties,
or electrical parameter drift.

2.8.1 Is the Variation Normal?

The central limit theorem, and the convenient properties of the normal distribution, are the reasons why this
particular function is taught as the basis of nearly all statistics of continuous variation. It is a common practice,
in most applications, to assume that the variation being analysed is normal, then to determine the mean and
SD of the normal distribution that best fits the data.

However, at this point we must stress an important limitation of assuming that the normal distribution
describes the real variation of any process. The normal pdf has values between +o00 and —oo. Of course a
machined component dimension cannot vary like this. The machine cannot add material to the component, so
the dimension of the stock (which of course will vary, but not by much) will set an upper limit. The nature of
the machining process, using gauges or other practical limiting features, will set a lower limit. Therefore the
variation of the machined dimension would more realistically look something like Figure 2.12. Only the central
part might be approximately normal, and the distribution will have been curtailed. In fact all variables, whether
naturally occurring or resulting from engineering or other processes, are curtailed in some way, so the normal
distribution, while being mathematically convenient, is actually misleading when used to make inferences
well beyond the range of actual measurements, such as the probability of meeting an adult who is 1 m tall.

There are other ways in which variation in engineering might not be normal. These are:

— There might be other kinds of selection process. For example, when electronic components such as
resistors, microprocessors, and so on are manufactured, they are all tested at the end of the production
process. They are then ‘binned’ according to the measured values. Typically, resistors that fall within
+2 % of the nominal resistance value are classified as precision resistors, and are labelled, binned and sold

Probability

" 1
4 3 -2 -1 1 2 3

x standard deviation ¢
Mean

Variable

Figure 2.12  Curtailed normal distribution.
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Figure 2.13  Effect of selection.

as such. Those that fall outside these limits, but within 10 % become non-precision resistors, and are sold
at a lower price. Those that fall outside +-10 % are scrapped. Because those sold as 10 % will not include
any that are £2 %, the distribution of values is as shown in Figure 2.13. Similarly, microprocessors are
sold with different operating speeds depending on the maximum speed at which they function correctly
on test, having all been produced on the same process. The different maximum operating speeds are the
result of the variations inherent in the process of manufacturing millions of transistors and capacitors and
their interconnections, on each chip on each wafer. The technology sets the upper limit for the design
and the process, and the selection criteria the lower limits. Of course, the process will also produce a
proportion that will not meet other aspects of the specification, or that will not work at all.

The variation might be unsymmetrical, or skewed, as shown in Figure 2.14. Distribution functions such
as the lognormal and the Weibull can be used to model unsymmetrical variation. However, it is still
important to remember that these mathematical models will still represent only approximations to the true
variations, and the further into the tails that we apply them the greater will be the scope for uncertainty
and error.

Probability

Variable

Figure 2.14 Skewed distribution.
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Figure 2.15 Bi-modal distribution.

— The variation might be multimodal (Figure 2.15), rather than unimodal as represented by distribution
functions like the normal, lognormal and Weibull functions. For example, a process might be centred on
one value, then an adjustment moves this nominal value. In a population of manufactured components
this might result in a total variation that has two peaks, or a bi-modal distribution. A component might be
subjected to a pattern of stress cycles that vary over a range in typical applications, and a further stress
under particular conditions, for example resonance, lightning strike, and so on.

Variation of engineering parameters is, to a large extent, the result of human performance. Factors such
as measurements, calibrations, accept/reject criteria, control of processes, and so on are subject to human
capabilities, judgements, and errors. People do not behave normally.

Walter Shewhart, in 1931 was the first to explain the nature of variation in manufacturing processes.
Figure 2.16 illustrates four very different kinds of variation, which, however all have the same means and

-no Mean no

Figure 2.16 four distributions with the same means and SDs (after W. A. Shewhart).
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Figure 2.16 SDs. These show clearly how misleading it can be to assume that any manufacturing variation is
normal and then to make assertions about the population based upon the assumption.

2.8.2 Effects and Causes

In engineering (and in many other applications) we are really much more concerned with the effects of
variation than with the properties and parameters. If, for example, the output of a process varied as in Figure
2.16(c), and the ‘+o’ lines denoted the allowable tolerance, 100 % would be in tolerance. If, however, the
process behaved as in (a) or (d), a proportion would be outside tolerance (only at the high end in the case of
(d)). Variation can have other effects. A smaller diameter on a shaft might lead to higher oil loss or reduced
fatigue life. Higher temperature operation might make an electronic circuit shut down. A higher proportion
of fast microprocessors in a production batch would result in higher profit. We must therefore first identify
the effects of variation (they are often starkly apparent), and determine whether and to what extent the effects
can be reduced. This is not simply a matter of ‘reducing SD’.
The effects of variation can be reduced in two ways:

1 We can compensate for the variation, by methods such as gauging or ‘select on test’ (this curtails the
original variation), by providing temperature compensating devices, and so on.
2 We can reduce the variation.

In both cases we must understand the cause, or causes, of the variation. Shewhart categorized manufacturing
variation into ‘assignable’ and ‘non-assignable’ causes. (These are also referred to as ‘special causes’ and
‘common causes’.) Assignable variation is any whose cause can be practically and economically identified
and reduced: deterministic and functional variation fall into this category. Non-assignable variation is that
which remains when all of the assignable variation has been removed. A process in this state is ‘in control’,
and will have minimal, random, variation. Note that these are practical criteria, with no strict mathematical
basis. Shewhart developed the methods of statistical process control (SPC) around this thinking, with the
emphasis on using the data and charting methods to identify and reduce assignable variation, and to keep
processes in control. SPC methods are described in detail in Chapter 13.

2.8.3 Tails

People such as life insurance actuaries, clothing manufacturers, and pure scientists are interested in averages
and SDs: the behaviour of the bulk of the data. Since most of the sample data, in any situation, will represent
this behaviour, they can make credible assertions about these population parameters. However, the further we
try to extend the assertions into the tails, the less credible they become, particularly when the assertions are
taken beyond any of the data. In engineering we are usually more concerned about the behaviour of variation
at the extremes, than that near the average. We are concerned by high stresses, high and low temperatures,
slow processors, weak components, and so on. In other words, it is the tails of the distributions that concern us.
We often have only small samples to measure or test. Therefore, using conventional mathematical statistics to
attempt to understand the nature, causes and effects of variation at the extremes can be misleading. However,
these situations can be analysed using the extreme value distributions presented earlier in this chapter.

2.9 Conclusions

These are the aspects that matter in engineering, and they transcend the kind of basic statistical theory
that is generally taught and applied. Later teachers, particularly W. E. Deming (see Chapter 1) and Genichi
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Taguchi (Chapter 11) extended the ideas by demonstrating how reducing variation reduces costs and increases
productivity, and by emphasizing the management implications.

Despite all of these reasons why conventional statistical methods can be misleading if used to describe
and deal with variation in engineering, they are widely taught and used, and their limitations are hardly
considered. Examples are:

— Most textbooks and teaching on SPC emphasise the use of the normal distribution as the basis for charting
and decision-making. They emphasize the mathematical aspects, such as probabilities of producing parts
outside arbitrary 20 or 3¢ limits, and pay little attention to the practical aspects discussed above.

— Typical design rules for mechanical components in critical stress application conditions, such as aircraft
and civil engineering structural components, require that there must be a factor of safety (say 2) between
the maximum expected stress and the lower o value of the expected strength. This approach is really
quite arbitrary, and oversimplifies the true nature of variations such as strength and loads, as described
above. Why, for example, select 30 ? If the strength of the component were truly normally distributed,
about 0.1 % of components would be weaker than the 3-o value. If few components are made and used,
the probability of one failing would be very low. However, if many are made and used, the probability of
a failure among the larger population would increase proportionately. If the component is used in a very
critical application, such as an aircraft engine suspension bolt, this probability might be considered too
high to be tolerable. Of course there are often other factors that must be considered, such as weight, cost,
and the consequences of failure. The criteria applied to design of a domestic machine might sensibly be
less conservative than for a commercial aircraft application.

— The ‘six sigma’ approach to achieving high quality is based on the idea that, if any process is controlled
in such a way that only operations that exceed plus or minus 6o of the underlying distribution will be
unacceptable, then fewer than 3.4 per million operations will fail. The exact quantity is based on arbitrary
and generally unrealistic assumptions about the distribution functions, as described above. (The ‘six
sigma’ approach entails other features, such as the use of a wide range of statistical and other methods to
identify and reduce variations of all kinds, and the training and deployment of specialists. It is described
in Chapter 17.)

2.10 Discrete Variation

2.10.1 The Binomial Distribution

The binomial distribution describes a situation in which there are only two outcomes, such as pass or fail,
and the probability remains the same for all trials. (Trials which give such results are called Bernoulli trials.)
Therefore, it is obviously very useful in QA and reliability work. The pdf for the binomial distribution is

!
f(x) = )ﬁ Pprg (2.37)

n! . n
may be written N

x!(n —x)!

This is the probability of obtaining x good items and (n — x) bad items, in a sample of n items, when the
probability of selecting a good item is p and of selecting a bad item is ¢. The mean of the binomial distribution
(from Eq. 2.13) is given by

Ww=np (2.38)
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and the SD from (Eq. 2.17)
o = (npg)"? (2.39)
The binomial distribution can only have values at points where x is an integer. The cdf of the binomial

distribution (i.e. the probability of obtaining r or fewer successes in n trials) is given by

r

Fr)= " ( ﬁ) A (2:40)

x=0

Excel functions for the binomial distribution are: pdf f(x) =BINOMDIST(x, n, p, FALSE) and cdf
F(r) =BINOMDIST(z; n, p, TRUE).

Example 2.6

A frequent application of the cumulative binomial distribution is in quality control acceptance sampling. For
example, if the acceptance criterion for a production line is that not more than 4 defectives may be found in
a sample of 20, we can determine the probability of acceptance of a lot if the production process yields 10 %
defectives.

From Eq. (2.40),

4
F4)=>Y" (2()) 0.170.920—»
— ~ Jorvo.

x=0
= 0.957

Utilising Excel spreadsheet F(4) = BINOMDIST(4, 20, 0.1, TRUE) = 0.9568.

Example 2.7

An aircraft landing gear has 4 tyres. Experience shows that tyre bursts occur on average on 1 landing in 1200.
Assuming that tyre bursts occur independently of one another, and that a safe landing can be made if not
more than 2 tyres burst, what is the probability of an unsafe landing?

If n is the number of tyres and p is the probability of a tyre bursting,

n=4
1
g =(1—-p)=0.999 17

The probability of a safe landing is the probability that not more than 2 tyres burst.

F(2) = (3) (0.000 83)%(0.999 17)> + (‘;) (0.000 83)(0.999 17)* + (g) (0.000 83)°(0.999 17)*

= 0.000004 1597 + 0.0033250069 + 0.996 670831
= 0.9999999977
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Again, utilizing Excel function: F(2) = BINOMDIST(2, 4, 0.000 83, TRUE) = 0.999 999 997 714
Therefore the probability of an unsafe landing is

1-0.9999999977 = 2.3 x 10~°

2.10.2 The Poisson Distribution

If events are Poisson-distributed they occur at a constant average rate, with only one of the two outcomes
countable, for example, the number of failures in a given time or defects in a length of wire:

X

for) = £

x!

exp(—u) (x=0,1,2,...) (2.41)

where p is the mean rate of occurrence. Excel functions for the Poisson distribution are: pdf f(x) =
POISSON(x, MEAN, FALSE) and cdf = POISSON(x, MEAN, TRUE). In this case, MEAN = & x Duration
(in time, length, etc.)

For example, if we need to know the probability of not more than 3 failures occurring in 1000 h of operation
of a system, when the mean rate of failures is 1 per 1000 h, (u = 1/1000, x = 3) we can calculate the MEAN =
w x 1000 h = 1.0.

Therefore P(x < 3) = POISSON(3, 1, TRUE) = 0.981.

The Poisson distribution can also be considered as an extension of the binomial distribution, in which 7 is
considered infinite or very large. Therefore it gives a good approximation to the binomial distribution, when
p or g are small and n is large. This is useful in sampling work where the proportion of defectives is low
(i.e. p <0.1).

The Poisson approximation is

W) exp(—np)
X (2.42)

[w=np; o =@mp)'? =pn'?]

f(x) =

This approximation allows us to use Poisson tables or charts in appropriate cases and also simplifies cal-
culations. However the applications of Poisson approximation became somewhat limited after computerized
applications, such as Excel and various statistical programs became available.

It is also important to note, that if times to failure are exponentially distributed (see exponential distribution
earlier this chapter), the probability of x failures is Poisson-distributed. For example, if the MTBF is 100 h,
the probability of having more than 15 failures in 1000 h is derived as:

1000

Expected number of failures = —— = 10
100

Probability of having 15 failures or less can be calculated using the Poisson Excel formula POISSON
(15,10,TRUE) = 0.9513. Thus the probability of having more than 15 failures is 1 — 0.9513 = 0.0487.

Example 2.8

If the probability of an item failing is 0.001, what is the probability of 3 failing out of a population
of 20007
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The binomial solution is

< 2000

3 ) 0.999'°70.001° = 0.1805

or utilizing Excel: BINOMDIST(3, 2000, 0.001, FALSE) = 0.180 53.
As an alternative, the Poisson approximation can be applied. The Poisson approximation is evaluated
as follows:

w=np
= 2000 x 0.001 = 2
3

2
P(x =3) = 3 exp(—2) = 0.1804

As the normal distribution represents a limiting case of the binomial and Poisson distributions, it can be
used to provide a good approximation to these distributions. For example, it can be used when 0.1 > p > 0.9
and n is large.

Then

1 =np
o = (npg)'?

Example 2.9

What is the probability of having not more than 20 failures if n = 100, p = 0.14?
Using the binomial distribution,

Pyy = 0.9640
Using the normal approximation
w=np=14
o = (npq)"/* =3.470
20— 14
z= =173
3.47

Referring to Appendix 1, Py = 0.9582 or Excel: = NORMSDIST(1.73) = 0.958 18.
As p — 0.5, the approximation improves, and we can then use it with smaller values of n. Typically, if
p = 0.4, we can use the approximation with n = 50.

2.11 Statistical Confidence

Earlier in this chapter we mentioned the problem of statistical confidence. Confidence is the exact fraction
of times the confidence interval will include the true value, if the experiment is repeated many times. The
confidence interval is the interval between the upper and lower confidence limits. Confidence intervals are
used in making an assertion about a population given data from a sample. Clearly, the larger the sample
the greater will be our intuitive confidence that the estimate of the population parameter will be close to
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the true value. To illustrate this point, let’s use the hypothetical example where we test 10 samples out of
large population and 1 sample fails with 9 surviving. In this case we may infer a non-parametric reliability of
90 %. If we test 100 samples from the same population and experience 10 failures, we may again similarly
infer 90 % reliability. However our confidence in that number will be much higher than that in the first case
due to the larger sample in the second case.

Statistical confidence and engineering confidence must not be confused; statistical confidence takes no
account of engineering or process knowledge or changes which might make sample data unrepresentative.
Derived statistical confidence values must always be interpreted in the light of engineering knowledge, which
might serve to increase or decrease our engineering confidence.

2.11.1 Confidence Limits on Continuous Variables

If the population value x follows a normal distribution, it can be shown that the means, X, of samples drawn
from it are also normally distributed, with variance o->/n (SD = o/n"?). The SD of the sample means is also
called the standard error of the estimate, and is denoted S,.

If x is not normally distributed, provided that # is large (> 30), X will tend to a normal distribution. If the
distribution of x is not excessively skewed (and is unimodal) the normal approximation for ¥ at values of n
as small as 6 or 7 may be acceptable.

These results are derived from the central limit theorem, mentioned in Section 2.6.1. They are of great
value in deriving confidence limits on population parameters, based on sample data. In reliability work it is
not usually necessary to derive exact confidence limits and therefore the approximate methods described are
quite adequate.

Example 2.10

A sample of 100 values has a mean of 27.56, with a standard deviation of 1.10. Derive 95 % confidence limits
for the population mean. (Assume that the sample means are normally distributed.)
In this case, the SD of the sample means, or standard error of the estimate, is

o 1.1

a2 7 100)12

We can refer to the table of the normal cdf (Appendix 1) to obtain the 95 % single-sided confidence limits.
The closest tabulated value of z is 1.65.

Alternatively we can run Excel’s Tools — Goal Seek for Z in NORMSDIST(Z) = 0.95 (see Figure 2.17) to
calculate the Z-value approaching 1.65.

Therefore, approximately £1.65 SDs are enclosed within the 95 % single-sided confidence limits. Since
the normal distribution is symmetrical, the 90 % double-sided confidence interval will exclude 5 % of values
at either limit.

In the example, 1.65 SDs = 0.18. Therefore the 95 % confidence limits on the population mean are
27.56 £ 0.18, and the 90 % confidence interval is (27.56 — 0.18) to (27.56 + 0.18).

As a guide in confidence calculations, assuming a normal distribution see Figure 2.18:

=+ 1.65 SDs enclose approximately 90 % confidence limits (i.e. 5 % lie in each tail).
=+ 2.0 SDs enclose approximately 95 % confidence limits (i.e. 2.5 % lie in each tail).
=+ 2.5 SDs enclose approximately 99 % confidence limits (i.e. 0.5 % lie in each tail).
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Figure 2.17 Ultilizing Excel’s Goal Seek to find Z-value corresponding to the 95 % confidence interval.

—1.656 +1.650
. —2.06 bl +2.06 N
" -2.50 R +2.50

Pt >,

+1.65 SD Confidence (area under the curve): C = 90%
+2.0 SD Confidence (area under the curve): C = 95%
+2.5 SD Confidence (area under the curve): C = 99%

Figure 2.18 Confidence levels for normal distribution.

2.12 Statistical Hypothesis Testing

It is often necessary to determine whether observed differences between the statistics of a sample and prior
knowledge of a population, or between two sets of sample statistics, are statistically significant or due merely to
chance. The variation inherent in sampling makes this distinction itself subject to chance. We need, therefore,
to have methods for carrying out such tests. Statistical hypothesis testing is similar to confidence estimation,
but instead of asking the question How confident are we that the population parameter value is within the
given limits? (On the assumption that the sample and the population come from the same distribution), we
ask How significant is the deviation of the sample?

In statistical hypothesis testing, we set up a null hypothesis, that is, that the two sets of information are
derived from the same distribution. We then derive the significance to which this inference is tenable. As in
confidence estimation, the significance we can attach to the inference will depend upon the size of the sample.
Many significance test techniques have been developed for dealing with the many types of situation which
can be encountered.

In this section we will cover a few of the simpler methods commonly used in reliability work. However, the
reader should be aware that the methods described and the more advanced techniques are readily accessible
on modern calculators and as computer programs. The texts listed in the Bibliography should be used to
identify appropriate tests and tables for special cases.
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2.12.1 Tests for Differences in Means (z Test)
A very common significance test is for the hypothesis that the mean of a set of data is the same as that of an

assumed normal population, with known p and o. This is the z fest. The z-statistic is given by

p=x |p—x|
Sz on~1/2

b4 (2.43)

where n is the sample size, © the population mean, X the sample mean and o the population SD. We then
derive the significance level from the normal cdf table.

Example 2.11

A type of roller bearing has a time to failure which is normally distributed, with a mean of 6000h and an
SD of 450h. A sample of nine, using a changed lubricant, gave a mean life of 6400h. Has the new lubricant
resulted in a statistically significant change in mean life?

[6000 — 6400| 2 67
ST as0x9 2 T

From Appendix 1, z = 2.67 indicates a cumulative probability of 0.996. This indicates that there is only
0.004 probability of observing this change purely by chance, that is, the change is significant at the 0.4 %
level. Thus we reject the null hypothesis that the sample data are derived from the same normal distribution
as the population, and infer that the new lubricant does provide an increased life.

Significance is denoted by «. In engineering, a significance level of less than 5 % can usually be considered
to be sufficient evidence upon which to reject a null hypothesis. A significance of greater than 10 % would
not normally constitute sufficient evidence, and we might either reject the null hypothesis or perform further
trials to obtain more data. The significance level considered sufficient will depend upon the importance of
the decision to be made based on the evidence. As with confidence, significance should also be assessed in
the light of engineering knowledge.

Instead of testing a sample against a population, we may need to determine whether there is a statistically
significant difference between the means of two samples. The SD of the distribution of the difference in the
means of the samples is

01 02

Swi-0) = 5 T i (2.44)
”1 n

The SD of the distribution of the difference of the sampling means is called the standard error of the
difference. This test assumes that the SDs are the population SDs. Then

difference in sample means

" standard error of the difference

Example 2.12

In Example 2.11, if the mean value of 6000 and SD of 450 were in fact derived from a sample of 60, does the
mean of 6400, with an SD of 380 from a sample of 9 represent a statistically significant difference?
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The difference in the means is
6400 — 6000 = 400

The standard error of the difference is

o o
Sa= s +
2T I
450 380
=502 "oz T 185
400
=— =216
“Tss

a=1— ®(z) = 0.015(1.5 percent)

We can therefore say that the difference is highly significant, a similar result to that of Example 2.11.

2.12.2 Use of the z Test for Binomial Trials

We can also use the z test for testing the significance of binomial data. Since in such cases we are concerned
with both extremes of the distribution, we use a two-sided test, that is, we use 2« instead of «.

Example 2.13

Two sets of tests give the results in Table 2.2. We need to know if the differences in test results are statistically
significant.
The null hypothesis that the tests are without difference is examined by combining the test results:

total failed 30
p - owaned OV 057
total tested 527

The standard error of the difference in proportions is

1 1\
Sa=|prq n_1+n_2

1 1 1/2
=10.057 x 0943 | —= + —
217 310
=0.02

Table 2.2  Results for tests in Example 2.13.

Test Number tested, n Number failed

1 217 16
2 310 14




56 Chapter 2 Reliability Mathematics

The proportion failed in test 1 is 16/217 = 0.074. The proportion failed in test 2 is 14/310 = 0.045. The
difference in proportions is 0.074 — 0.045 = 0.029. Therefore z = 0.029/0.020 = 1.45, giving

a=1— ®(z) = 7.35 per cent
200 = 14.7 per cent

With such a result, we would be unable to reject the null hypothesis and would therefore infer that the
difference between the tests is not very significant.

2.12.3 x2 Test for Significance

The x? test for the significance of differences is used when we can make no assumptions about the underlying
distributions. The value of the x? statistic is calculated by summing the terms

(xi — E;)?
E;

where x; and E; are the ith observed and expected values, respectively. This value is compared with the x>
value appropriate to the required significance level.

Example 2.14

Using the data of Example 2.13, the x? test is set up as follows:

Test Failure Success Totals
1 16 12.35 201 204.65 217
2 14 17.65 296 292.35 310
Totals 30 497 527

The first number in each column is the observed value and the second number is the expected value based
upon the totals of the observations (e.g. expected failures in test 1 = 30/527 x 217 = 12.35).

, (16— 12.35 (201 —204.65)> (14 —17.65)*> (296 — 292.35)?
B 12.35 204.65 17.65 292.35

=1.94

The number of DF is one less than the number of different possibilities which could exist. In this case
there is only one DF, since there are two possibilities — pass and fail. The value of x? of 1.94 for 1 DF (from
Appendix 2) occurs between 0.1 and 0.2 (alternatively, CHIDIST(1.94,1) = 0.1636). Therefore a cumulative
probability is between 80 and 90 % (1- CHIDIST(1.94,1) = 0.8363). The difference between the observed
data sets is therefore not significant. This inference is the same as that derived in Example 2.13.

2.12.4 Tests for Differences in Variances. Variance Ratio Test (F Test)

The significance tests for differences in means described above have been based on the assumption in
the null hypothesis that the samples came from the same normal distribution, and therefore should have a
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Table 2.3 Life test data on two items.

Sample size, n = Sample standard deviation, o Sample variance, o

Item 1 20 37 1369
Item 2 10 31 961

common mean. We can also perform significance tests on the differences of variances. The variance ratio,
F, is defined as

greater estimate of population variance

lesser estimate of population variance

Values of the F distribution are well tabulated against the number of degrees of freedom in the two variance
estimates (for a sample size n, DF = n — 1) and can easily be found on the Internet (see for example
NIST, 2011).

The Excel® function for the values of F-distribution is FINV(P, DF1, DF2). Where P is a probability
(significance level), DF1 is degrees of freedom for the first population (numerator) and DF2 for the second
population (denominator). When the value of F-distribution and degrees of freedom are known, the probability
can be calculated using the other Excel function FDIST(F, DF1, DF2). The use of the F test is illustrated by
Example 2.15.

Example 2.15

Life test data on two items give the results in Table 2.3.

Entering the tables of F values at 19 DF for the greater variance estimate and 9 DF for the lesser variance
estimate, we see that at the 5 % level our value for F is less than the tabulated value. Therefore the difference
in the variances is not significant at the 5 % level. The Excel solution would involve the Goal Seek function
(similar to the example in Figure 2.17) for the value P as FINF(P, 19, 9) = 1.42 and would produce P = 0.3,
which is much higher than the required 5 % risk level.

2.13 Non-Parametric Inferential Methods

Methods have been developed for measuring and comparing statistical variables when no assumption is made
as to the form of the underlying distributions. These are called non-parametric (or distribution-free) statistical
methods. They are only slightly less powerful than parametric methods in terms of the accuracy of the
inferences derived for assumed normal distributions. However, they are more powerful when the distributions
are not normal. They are also simple to use. Therefore they can be very useful in reliability work provided
that the data being analysed are independently and identically distributed (IID). The implications of data not
independently and identically distributed are covered in Section 2.15 and in the next chapter.
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Table 2.4  Critical values of r for the sign test.
Reproduced by permission of McGraw-Hill.

Significance level per cent

n 10 5 1

8 1 0 0
10 1 1 0
12 2 2 1
14 3 2 1
16 4 3 2
18 5 4 3
20 5 5 3
25 7 7 5
30 10 9 7
35 12 11 9
40 14 13 11
45 16 15 13
50 18 17 15
55 20 19 17
60 23 21 19
75 29 28 25
100 41 39 36

2.13.1 Comparison of Median Values
2.13.1.1 The Sign Test

If a null hypothesis states that the median values of two samples are the same, then about half the values of
each sample should lie on either side of the median. Therefore about half the values of (x; — X) should be
positive and half negative. If the null hypothesis is true and r is the number of differences with one sign, then
r has a binomial distribution with parameters n and p =1/2. We can therefore use the binomial distribution to
determine critical values of r to test whether there is a statistically significant difference between the median
values. Table 2.4 gives critical values for r for the sign test where r is the number of less frequent signs. If
the value of r is equal to or less than the tabulated value the null hypothesis is rejected.

Example 2.16

Ten items are tested to failure, with lives
98, 125, 141,72, 119, 88, 64, 187,92, 114

Do these results indicate a statistically significant change from the previous median life of 125?
The sign test result is

~0+————+-——

that is, »r = 2, n = 9 (since one difference = 0, we discard this item).
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Table 2.4 shows that r is greater than the critical value for n = 9 at the 10 % significance level, and therefore
the difference in median values is not statistically significant at this level.

2.13.1.2 The Weighted Sign Test

We can use the sign test to determine the likely magnitude of differences between samples when differences
in medians are significant. The amount by which the samples are believed to differ are added to (or subtracted
from) the values of one of the samples, and the sign test is then performed as described above. The test then
indicates whether the two samples differ significantly by the weighted value.

2.13.1.3 Tests for Variance

Non-parametric tests for analysis of variance are given in Chapter 11.

2.13.1.4 Reliability Estimates

Non-parametric methods for estimating reliability values are given in Chapter 13.

2.14 Goodness of Fit

In analysing statistical data we need to determine how well the data fit an assumed distribution. The goodness
of fit can be tested statistically, to provide a level of significance that the null hypothesis (i.e. that the data
do fit the assumed distribution) is rejected. Goodness-of-fit testing is an extension of significance testing in
which the sample cdf is compared with the assumed true cdf.

A number of methods are available to test how closely a set of data fits an assumed distribution. As with
significance testing, the power of these tests in rejecting incorrect hypotheses varies with the number and
type of data available, and with the assumption being tested.

2.14.1 The x? Goodness-of-Fit Test

A commonly used and versatile test is the x> goodness-of-fit test, since it is equally applicable to any assumed
distribution, provided that a reasonably large number of data points is available. For accuracy, it is desirable
to have at least three data classes, or cells, with at least five data points in each cell.

The justification for the x? goodness-of-fit test is the assumption that, if a sample is divided into n cells
(i.e. we have v degrees of freedom where v = n —1), then the values within each cell would be normally
distributed about the expected value, if the assumed distribution is correct, that is, if x; and E; are the observed
and expected values for cell i:

n

i — Ei)
Z % = x2 (with n — 1 degrees of freedom)

i

High values of x? cast doubt on the null hypothesis. The null hypothesis is usually rejected when the value
of x? falls outside the 90th percentile. If x? is below this value, there is insufficient information to reject the
hypothesis that the data come from the supposed distribution. If we obtain a very low x2 (e.g. less than the
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Table 2.5 Data from an overstress life test of transistors.

Cell (h) Number in cell Cell (h) Number in cell

0-999 18 3000-3999 12
1000-1999 14 4000-4999 6
2000-2999 10

10th percentile), it suggests that the data correspond more closely to the supposed distribution than natural
sampling variability would allow (i.e. perhaps the data have been ‘doctored’ in some way).
The application can be described by use of an example.

Example 2.17

Failure data of transistors are given in Table 2.5. What is the likelihood that failures occur at a constant
average rate of 12 failures/1000 hours?

18 — 12)2 14 —12)2 10 — 12)2 12 —12)2 6 — 12)°
o UB—127 (-1 (0-1 (212 6127
12 12 12 12 12

6.67

Referring to Appendix 2 for values of x? with x2? with (n — 1) = 4 degrees of freedom, 6.67 lies between
the 80th and 90th percentiles of the x 2 distribution (risk factors between 0.1 and 0.2). CHIDIST (6.67, 4) =
0.1543. Therefore the null hypothesis that the data are derived from a constant hazard rate process cannot be
rejected at the 90 % level (risk factor needs to be less than 0.1).

If an assumed distribution gave expected values of 20, 15, 12, 10, 9 (i.e. a decreasing hazard rate), then

,  (18-20  (14—157 (10—12° (12— 107 (8 —9)
=" T 15 "1 T T

=1.11

x% = 1.11 lies close to the 10th percentile (CHIDIST(1.11, 4) = 0.8926). Therefore we cannot reject the
null hypothesis of the decreasing hazard rate distribution at the 90 % level.

Note that the E; values should always be at least 5. Cells should be amalgamated if necessary to achieve this,
with the degrees of freedom reduced accordingly. Also, if we have estimated the parameters of the distribution
we are fitting to, the degrees of freedom should be reduced by the number of parameters estimated.

2.14.2 The Kolmogorov—Smirnov Test

Another goodness-of-fit test commonly used in reliability work is the Kolmogorov—Smirnov (K-S) test. It
is rather simpler to use than the x? test and can give better results with small numbers of data points. It is
also convenient to use in conjunction with probability plots (see Chapter 3), since it is based upon cumulative
ranked data, that is, the sample cdf. The procedure is:

1 Tabulate the ranked failure data. Calculate the values of |x; — E;| where x; is the ith cumulative rank value
and E; the expected cumulative rank value for the assumed distribution.

2 Determine the highest single value.

3 Compare this value with the appropriate K-S value (Appendix 3).
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Table 2.6 Failure data with ranked values of x;.

Event Time to failure (h) X E; |x; — Ei|
1 12.2 0.056 0.035 0.021
2 13.1 0.136 0.115 0.021
3 14.0 0.217 0.29 0.073
4 14.1 0.298 0.32 0.022
5 14.6 0.379 0.44 0.061
6 14.7 0.459 0.46 0.001
7 14.7 0.54 0.46 0.08*
8 15.1 0.621 0.58 0.041
9 15.7 0.702 0.73 0.028

10 15.8 0.783 0.75 0.033

11 16.3 0.864 0.85 0.014

12 16.9 0.94 0.95 0.006

Example 2.18

Table 2.6 shows failure data with the ranked values of x;. We wish to test the null hypothesis that the data do
not fit a normal distribution with parameters which give the tabulated cumulative values of E;. Therefore, in
the E; column we list the expected value of proportion failed at each failure time.

The largest value of lx; — E;l is 0.08 (shown in Table 2.6 by*). The Kolmogorov—Smirnov table (Appendix
3) shows that, for n = 12, the critical value of lx; — E;l is 0.338 at the 10 % significance level. Therefore the
null hypothesis is not rejected at this level, and we can accept the data as coming from the hypothesized
normal distribution.

Example 2.18 shows quite a large difference between the critical K-S value and the largest value of
Ix; — E;l. When the parameters of the assumed cdf are being estimated from the sample data, as in this
example, the critical K-S values are too large and give lower significance levels than are appropriate in the
circumstances. In order to correct for this, the critical values should be multiplied by the factors:

0.70 (B > 3.0)
0.70 (1.5 < B < 3.0)
0.70 (B < 1.5)

where 8 is the Weibull shape parameter. Therefore, in Example 2.18, since the Weibull g value appropriate
to the normal distribution is > 3.0, the corrected K-S critical value is 0.338 x 0.70 = 0.237.

2.15 Series of Events (Point Processes)

Situations in which discrete events occur randomly in a continuum (e.g. time) cannot be truly represented
by a single continuous distribution function. Failures occurring in repairable systems, aircraft accidents and
vehicle traffic flow past a point are examples of series of discrete events. These situations are called stochastic
point processes. They can be analysed using the statistics of event series.

The Poisson distribution function (Eq. 2.41) describes the situation in which events occur randomly and
at a constant average rate. This situation is described by a homogeneous Poisson process (HPP). A HPP is a
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Stationary point process, since the distribution of the number of events in an interval of fixed length does not
vary, regardless of when (where) the interval is sampled.
The Poisson distribution function is (from (2.41))

Ax)"

n!

f(x) = ( exp (—ix) (forn=0,1,2,...) (2.45)

where A is the mean rate of occurrence, so that Ax is the expected number of events in (0, x).

In a non-homogeneous Poisson process (NHPP) the point process is non-stationary (rate of occurrence is
a function of time), so that the distribution of the number of events in an interval of fixed length changes as x
increases. Typically, the discrete events (e.g. failures) might occur at an increasing or decreasing rate.

Note that an essential condition of any homogeneous Poisson process is that the probabilities of events
occurring in any period are independent of what has occurred in preceding periods. A HPP describes a
sequence of independently and identically exponentially distributed (IIED) random variables. A NHPP
describes a sequence of random variables which is neither independently nor identically distributed.

2.15.1 Trend Analysis (Time Series Analysis)

When analysing data from a stochastic point process it is important to determine whether the process has
a trend, that is, to know whether a failure rate is increasing, decreasing or constant. We can test for trends
by analysing the arrival values of the event series. The arrival values x|, xp, ..., x, are the values of the
independent variables (e.g. time) from x = 0 at which each event occurs. The interarrival values X, X5, . .. X,
are the intervals between successive events 1, 2, . . ., n, from x = 0. Figure 2.19 shows the distinction between
arrival and interarrival values.

If xq is the period of observation, then the test statistic for trend is

_ Zxi/n—xo/2
T xo/1/(121n)

(2.46)

Arrival values x; X
X1 X2 X3 X4 X5
Event => 1 2 3 4 5
Interarrival values X; X

Figure 2.19  Arrival and interarrival values.
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This is called the centroid test or the Laplace test. It compares the centroid of the observed arrival values
with the mid-point of the period of observation. If U = 0 there is no trend, that is, the process is stationary. If
U < 0 the trend is decreasing, that is, the interarrival values are tending to become larger. Conversely, when
U > 0 the trend is increasing, that is, interarrival values are tending to become progressively smaller.

If the period of observation ends at an event, use (n — 1) instead of n and exclude the time to the last event
from the summation Xx;.

We can test the null hypothesis that there is no trend in the chronologically ordered data by testing the
value of U against the values of the standard normal variate, z. For example, using Appendix 1 or Excel
function, if U = 1.65, for z = 1.65, ®(z) = 0.95. Therefore we can reject the null hypothesis at the 5 %
significance level.

The centroid test is theoretically adequate if n > 4, when the observation interval ends with an event, and
if n > 3, when the interval is terminated at a predetermined time.

The method is also called time series analysis (TSA).

Example 2.19

Arrival values (x;) and interarrival values (X;) between 12 successive failures of a component are as follows
(observation ends at the last failure):

Xj Xi Xi Xi

175 175 618 102
196 21 641 23
304 108 679 38
415 111 726 47
504 89 740 14
516 12 791 51

Yx; = 5514 (excluding 791)

n—1=11
E)C,'
2N 5013
n—1
10 3955
2
501.3 — 395.5

U= = 1.54 Referring to Appendix 1for z = 1.54, ®(z) = 0.94
791 /T2 x 1D gloApp @

Therefore we can reject the null hypothesis that there is no trend at the 6 % significance level. The
interarrival times are becoming shorter, that is, the failure rate is increasing.

The existence of a trend in the data, as in Example 2.19, indicates that the interarrival values are not
independently and identically distributed (IID). This is a very important point to consider in the analysis of
failure data, as will be explained in Chapter 13.

2.15.2 Superimposed Processes

If a number of separate stochastic point process combine to form an overall process, for example, failure
processes of individual components (or sockets) in a system, these are called superimposed processes. If the
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\L, HPP: 1ID exponential variables

Rate of occurrence

% Renewal process: [ID non—exponential variables

Time

Figure 2.20 Rate of occurrence for superimposed processes.

individual random variables are IID exponential then the overall process variable is also IID exponential and
the process is HPP.

If the individual variables are IID non-exponential, the overall process will tend to a HPP. Such a process
is called a renewal process or ordinary renewal process (ORD). Figure 2.20 shows these processes. Renewal
process analytics is often applied to describe the behaviour of a repairable system, where initial failures
follow an exponential or any other statistical distribution and failed parts can be repaired to “as good as
new” condition, returned to operation and experience secondary failures. None of the traditional statistical
distribution covered in this chapter can be applied due to the fact that the failed units are not taken out of the
total population, therefore the cdf can theoretically be greater than 1.0 in the cases where the total number
of failures exceeds the size of the population. The renewal process can be described by the fundamental
renewal equation:

1

A(t) = F(1)+ f At —1)dF(7)

0

Where A(?) is the renewal function, which would represent the number of replacements (repairs) per unit
and F(z) is the cdf of the primary failures (as if there were no replacement of the failed parts).

2.16 Computer Software for Statistics

Computer software is available which can be used to carry out the analytical techniques described in this
chapter and in later chapters which describe particular applications. As mentioned before, Microsoft Excel
has a wide variety of statistical functions, covering most of the equations presented in this chapter. Among the
software packages specializing in statistical analysis Minitab® statistical software and SAS® are probably
most widely used around the world. Minitab is a comprehensive statistical package covering various aspects
of data analysis, quality, design of experiments, and other engineering and non-engineering applications. SAS
has more emphasis on business applications.
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2.17 Practical Conclusions

Whilst the mathematical methods described in this chapter can be useful for providing insights and for
forecasting, it is important that their limitations are appreciated. They are mathematical models, and they do
not necessarily reflect reality in the way that deterministic, physics-based formulae do. The important points
that must be borne in mind when applying statistical methods to engineering are:

— Real variation is seldom normal.

— The most important variation, as far as reliability is concerned, is usually that in the tails, where there is
inevitably less (or no) data, the data are more uncertain, and where conventional statistical models can be
most misleading.

— Variation can change over time, so that the patterns measured at one time might not represent the true
situation at another. We will cover this aspect in more detail in later chapters.

— There might be interaction effects between variables, causing combined effects that are more significant
than those of individual variations. This aspect will be covered in the later chapters.

— Variation in engineering is usually made or influenced by people. People do not behave in accordance
with any credible mathematical models.

— Most engineering education in statistics covers only the mathematics, and few statisticians understand the
practical aspects of the engineering problems they help to solve. This leads to inappropriate analyses and
conclusions, and to a distrust of statistical methods among engineers.

We must strike an appropriate balance between using deterministic and statistical methods. For example,
if we conduct a test in which an item is released from a height, and if it drops the test is a success, with results
as follows:

items tested (O failures): 0 1 10 20
then we could infer that the 80 % confidence that the reliability is at least 0.9 would be:
0 090 0.98 0.99

This assumes that the data are entirely statistical, that is, we have no prior knowledge of the physics or
engineering. On the other hand, if we are confident that we have such knowledge (in this case, that the force of
gravity will always act on the released items), then we will have 100 % confidence in 100 % reliability, even
without performing any tests. In such deterministic cases statistical tests and interpretations are inappropriate.

However, many engineering situations can range from deterministic to statistical. For example, there might
be cases when the release mechanism fails to open properly. The causes and effects of variations are often
uncertain (particularly when interactions exist), so we must make the best use of our knowledge and use the
best methods to explore the uncertainties.

Statistical tests can, by themselves, generate misleading results. We have discussed this in the context of
extrapolations beyond the range of measured data. Another example might be a series of tests that indicate
that an item operated at high stress is more reliable than when operated at low stress. The results might be due
to the items on the high-stress tests being manufactured using a better process, or the high stress may actually
improve the reliability (e.g. a higher temperature might improve the performance of a seal), or the results
might be due to chance and unrepresentative of future tests. The cause of the observed reliability difference
must be ascertained and understood in engineering terms. Sometimes this can be difficult.
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Ultimately, all of our understanding should be based upon real knowledge (scientific, human, etc.). The

statistical methods can provide clues to help us to gain such knowledge. The quotation from Kendall and
Stuart on the inside of the front cover should be the motto for all statistics applications.

Questions

1.

&

6.

In the test firing of a missile, there are some events that are known to cause the missile to fail to reach its
target. These events are listed below; together with their approximate probabilities of occurrence during
a flight:

Event Probability
(A1) Cloud reflection 0.0001
(Az) Precipitation 0.005
(A3) Target evasion 0.002
(A4) Electronic countermeasures 0.04

The probabilities of failure if these events occur are:
P(F/A)) =0.3; P(F/A;) = 0.01; P(F/A3) = 0.005; P(F/A4) = 0.0002.

Use Bayes’ theorem (Eq. 2.10) to calculate the probability of each of these events being the cause in
the event of a missile failing to reach its target.

For a device with a failure probability of 0.02 when subjected to a specific test environment, use the
binomial distribution to calculate the probabilities that a test sample of 25 devices will contain (a) no
failures; (b) one failure; (c) more than one failure.

Repeat question 2 for a failure probability of 0.2.

Repeat questions 2 and 3 using the Poisson approximation to the binomial, and comment on the answers.
One of your suppliers has belatedly realized that about 10 % of the batches of a particular component
recently supplied to you have a manufacturing fault that has reduced their reliability. There is no
external or visual means of identifying these substandard components. Batch identity has, however,
been maintained, so your problem is to sort batches that have this fault (‘bad’ batches) from the rest
(‘good’ batches). An accelerated test has been devised such that components from good batches have a
failure probability of 0.02 whereas those from bad batches have a failure probability of 0.2. A sampling
plan has been devised as follows:

1 Take a random sample of 25 items from each unknown batch, and subject them to the test.

2 If there are O or 1 failed components, decide that the batch is a good one.

3 If there are two or more failures, decide that the batch is a bad one.

There are risks in this procedure. In particular, there are (i) the risk of deciding that a good batch is
bad; and (ii) the risk of deciding that a bad batch is good. Use Bayes’ theorem and your answers to
questions 2 and 3 to evaluate these risks.

a Explain the circumstances in which you would expect observed failure times to conform to an
exponential distribution.
b Explain the relationship between the exponential and Poisson distributions in a reliability context.
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¢ For equipment with an MTBF of 350 h calculate the probability of surviving a 200 h mission without
failure.

A railway train is fitted with three engine/transmission units that can be assumed to exhibit a constant

hazard with a mean life of 200h. In a 15h working day, calculate the probability of a train having:

(a) no failed engine/transmission units, (b) not more than one failed unit, (¢) not more than two

failed units.

Assuming the exponential failure distribution, calculate the probability of a system surviving an operation

time equal to twice the duration of the MTBF.

a Explain, using sketches where necessary, the meanings of the following terms used in describing
the reliability behaviour of components; and show clearly how they are related to each other: (i)
lifetime probability density function; (ii) cumulative distribution function; (iii) reliability function;
(iv) hazard function.

b Write down the expression for the cumulative distribution function (cdf) of the two-parameter
Weibull distribution. Define its parameters and produce sketches to show how changing their values
influences the cdf and the hazard function.

Ten components were tested to failure. The ordered ages at failure (hours) were: 70.9; 87.2; 101.7;

104.2; 106.2; 111.4; 112.6; 116.7; 143.0; 150.9.

a On the assumption that these times to failure are normally distributed, estimate the component
reliability and the hazard function (i) at age 100 h; and (ii) at age 150 h.

b Use a Kolmogorov—Smirnov test to see whether it is reasonable to assume normality.

A flywheel is retained on a shaft by five bolts, which are each tightened to a specified torque of 50 &

5Nm. A sample of 20 assemblies was checked for bolt torque. The results from the 100 bolts had a

mean of 47.2 Nm and a standard deviation of 1.38 Nm.

a Assuming that torques are normally distributed, estimate the proportion below 45 Nm.

b For a given assembly, what is the probability of (i) there being no bolts below 45 Nm; (ii) there being
at least one bolt below 45 Nm; (iii) there being fewer than two bolts above 45 Nm; (iv) all five bolts
being below 45 Nm.

¢ Inthe overall sample of 100 bolts, four were actually found with torques below 45 Nm. (i) Comment
on the comparison between this result and your answer to (a) above. (ii) Use this result to obtain a
90 % two-sided confidence interval for the proportion below 45 Nm.

d Explain the meaning of the confidence interval in c (ii) above as you would to an intelligent, but
non-technically-minded, manager.

e The lowest torque bolt in each assembly was identified. For these 20 bolts, the mean torque was
45.5 Nm and the standard deviation 0.88 Nm. Assuming an appropriate extreme-value distribution,
calculate the probability that on a given assembly the lowest torque will be (i) below 45 Nm; (ii)
below 44 Nm.

The following data are the times (hours) between successive failures in a machining centre: 96; 81; 105;

34;92; 81; 89; 138; 75; 156; 205; 111; 177.

Calculate the trend statistic (Eq. 2.46) and test its significance.

Describe four ways in which the variation of an engineering parameter might be different from that

based upon assuming that the normal distribution function is the correct model. Give an example in

each case.

In most statistical applications the results that matter most relate to the behaviour of the majority of the

population being studied. Why is this not the case in most engineering applications?

Ten items are put on test, until all have failed. The first failure occurs at 35000 operating cycles.

Regression analysis of the times to failure shows a good fit to a two-parameter Weibull distribution,

and the distribution parameters are derived. The specification states that the item should have a Bjg
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life of 30 000 cycles. Discuss the practical implications assuming that the test shows compliance with
the specification.

In question 15, how might your judgment be influenced if the item is:

a A steel bolt subject to fatigue loading?

b A plastic component in a child’s toy?

¢ A lighting unit?

d A bearing in a gearbox?

e A light-emitting diode?

(You might like to try this question after studying Chapters 8 and 9.)

17. Explain what is meant by ‘statistical confidence’. How might statistical confidence derived from an
experiment be modified in the light of engineering knowledge?

18. In Example 2.7 describe three factors that could invalidate the assumption that tyre failures occur
independently of one another. In what ways might the assumption be more valid for car tyres?

19. What is the probability of having not more than 20 but not less than 10 failures if n = 100, p = 0.14
(Section 2.10)?

a Using the binomial distribution
b Using the normal approximation

20. The life of an electronic controller is distributed lognormally, with the parameters © = 20 and o = 10.
What is the probability that a controller will last (a) at least 50h? (b) at least 200 h?

21. A commercial washing machine has a non-repairable motor with a constant failure rate of 0.08 failure
per year. The service organization has purchased two spare motors. If the design life of the washing
machine is 7 years, what is the probability that two spares will be adequate. Hint: assume Poisson
distribution.

22. Compare reliability values for the two products, Product A with exponentially distributed life and
product B with Weibull distributed life. The parameters are MTBF, = ng = 1000 h. Compare the
reliabilities at 300 hours for:

Bg =0.5
Bs=1.0
Bs =3.0
How would you describe the effect of the Weibull shape parameter 8 on the reliability if the scale
parameter remains the same?

23. Show the derivations of the hazard rate and cumulative hazard function for the Weibull distribution

24. Calculate the cumulative hazard rate for the Weibull distribution with the parameters g = 2.5 n = 200
h at time t = 100 h.
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3
Life Data Analysis and Probability Plotting

3.1 Introduction

It is frequently useful in reliability engineering to determine which distribution best fits a set of data and to
derive estimates of the distribution parameters. The mathematical basis for the approaches to these problems
was covered in Chapter 2.

3.1.1 General Approach to Life Data Analysis and Probability Plotting

The methods described in this chapter can be used to analyse any appropriate data, such as dimensional
or parameter measurements. However, their use for analysing reliability time-to-failure (life data) will
be emphasized.

General-purpose statistical software such as Minitab® includes capabilities for probability plotting. Since
the Weibull distribution is the most commonly applied in reliability life data analysis, computer software
packages have been developed specifically for this purpose, such as ReliaSoft Weibull++®, SuperSMITH
Weibull® and few others. This chapter makes use of ReliaSoft Weibull4+-+® software to illustrate how to
perform these tasks.

Note that probability plotting methods to derive time-to-failure distribution parameters are only applicable
when the data are independently and identically distributed (IID). This is usually the case for non-repairable
components and systems but may not be the case with failure data from repairable systems. The reason is
that repaired systems can have secondary failures, which are dependent on the primary failures. Also due
to successive repairs the population of repairable systems can experience more failures than the size of that
population causing cdf > 1.0, which is mathematically impossible. Reliability modelling and data analysis
for repairable systems will be covered later in Chapters 6 and 13.

3.1.2 Statistical Data Analysis Methods

The process of finding the best statistical distribution based on the observed failure data, can be graphically
illustrated by Figure 3.1. Based on the available data comprising the shaded segment of the pdf the rest of
f(t) can be ‘reconstructed’. The goal of this process is to find the best fitting statistical distribution and to
derive estimates of that distribution’s parameters and consequently the reliability function R(f). However in

Practical Reliability Engineering, Fifth Edition. Patrick D. T. O’Connor and Andre Kleyner.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 3.1 Probability plotting alternatives in regards to the possible pdf of failure distribution.

practical terms, this procedure is typically done based on constructing the cdf curve which has the best fit to
the existing data.

The least mathematically intensive method for parameter estimation is the method of probability plotting.
As the term implies, probability plotting in general involves a physical plot of the data on specially constructed
probability plotting paper (different for each statistical distribution). The axes of probability plotting papers
are transformed in such a way that the true cdf plots as a straight line. Therefore if the plotted data can be fitted
by a straight line, the data fit the appropriate distribution (see Figure 3.2 fitting the normal probability plot).
Further constructions permit the distribution parameters to be estimated. This method is easily implemented
by hand, given that one can obtain the appropriate probability plotting paper. Probability plotting papers exist
for all the major distribution including normal, lognormal, Weibull, exponential, extreme value, and so on
and can be downloaded from the internet (see, e.g. ReliaSoft, 2011) However most of probability plotting
these days is done with the use of computer software, which is covered later in this chapter.

The Weibull distribution (see Chapter 2) is a popular distribution for analysing life data, so the process is
often referred to as Weibull analysis. The Weibull model can be applied based on 2-parameter, 3-parameter or
mixed distributions. Other commonly used life distributions include the exponential, extreme value, lognormal
and normal distributions. The analyst chooses the life distribution, that is most appropriate to model each
particular data set based on goodness-of-fit tests, past experience and engineering judgement. The life data
analysis process would require the following steps:

Gather life data for the product.

Select a lifetime distribution against which to test the data.

3 Generate plots and results that estimate the life characteristics of the product, such as the reliability, failure
rate, mean life, or any other appropriate metrics.

N =

This chapter will discuss theoretical and practical aspects of performing probability plotting and life
data analysis.

3.2 Life Data Classification

In reliability work, life data can be time, distance travelled, on/off switches, cycles, and so on to failure.
The accuracy and credibility of any parameter estimations are highly dependent on the quality, accuracy and
completeness of the supplied data. Good data, along with the appropriate model choice, usually results in
good parameter estimations.
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In using life data analysis (as well as general statistics), one must be very cautious in qualifying the data.
The first and foremost assumption that must be satisfied is that the collected data, or the sample, are truly repre-
sentative of the population of interest. Most statistical analyses assume that the data are drawn at random from
the population of interest. For example, if our job was to estimate the average life of humans, we would expect
our sample to have the same make-up as the general population, that is equal numbers of men and women, a
representative percentage of smokers and non-smokers, and so on. If we used a sample of ten male smokers
to estimate life expectancy, the resulting analysis and prediction would most likely be biased and inaccurate.
The assumption that our sample is truly representative of the population and that the test or use conditions
are truly representative of the use conditions in the field must be satisfied in all analyses. Bad, or insufficient
data, will almost always result in bad estimations, which has been summed up as ‘Garbage in, garbage out.’

3.2.1 Complete Data

Complete data means that the value of each sample unit is observed or known. For example, if we had to
compute the average test score for a sample of ten students, complete data would consist of the known score
for each student. Likewise in the case of life data analysis, our data set if complete would be composed of
the times-to-failure of all units in our sample. For example, if we tested five units and they all failed and their
times-to-failure were recorded (see Figure 3.3) we would then have complete information as to the time of
each failure in the sample.

3.2.2 Censored Data

In many cases when life data are analysed, all of the units in the sample may not have failed (i.e. the event
of interest was not observed) or the exact times-to-failure of all the units are not known. This type of data is
commonly called censored data. There are three types of possible censoring schemes, right censored (also
called suspended data), interval censored and left censored.

3.2.3 Right Censored (Suspended)

The most common case of censoring is what is referred to as right censored data, or suspended data. In the
case of life data, these data sets are composed of units that did not fail. For example, if we tested five units

Figure 3.3 Complete data set.
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Figure 3.4 Right censored data.

and only three had failed by the end of the test, we would have suspended data (or right censored data) for
the two non-failed units. The term ‘right censored’ implies that the event of interest (i.e. the time-to-failure)
is to the right of our data point. In other words, if the units were to keep on operating, the failure would occur
at some time after our data point (or to the right on the time scale), see Figure 3.4.

3.2.4 Interval Censored

The second type of censoring is commonly called interval censored data. Interval censored data reflects
uncertainty as to the exact times the units failed within an interval. This type of data frequently comes from
tests or situations where the objects of interest are not constantly monitored. If we are running a test on five
units and inspecting them every 100 hours, we only know that a unit failed or did not fail between inspections.
More specifically, if we inspect a certain unit at 100 hours and find it is operating and then perform another
inspection at 200 hours to find that the unit is no longer operating, we know that a failure occurred in the
interval between 100 and 200 hours. In other words, the only information we have is that it failed in a certain
interval of time (see Figure 3.5). This is also often referred to as inspection data.

Figure 3.5 Interval censored data.
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Figure 3.6 Left censored data.

3.2.5 Left Censored

The third type of censoring is similar to the interval censoring and is called left censored data. In left censored
data, a failure time is only known to be before a certain time (see Figure 3.6) or to the left of our data point.
For instance, we may conduct the first inspection at 100 hours and find that the part has already failed. In
other words, it could have failed any time between 0 and 100 hours. This is identical to interval censored data
in which the starting time for the interval is zero.

Complete data is much easier to work with than any type of censored data. While complete data sets
and right censored data can often be analysed using graphical methods the left and interval censored data
require more sophisticated approaches involving software tools. Some of these methods will be covered in
this chapter.

3.3 Ranking of Data

Probability plotting (manual or computerized) is often based upon charting the variable of interest (time,
miles, cycles, etc.) against the cumulative percentage probability. The data therefore need to be ordered and
the cumulative probability of each data point calculated. This section will cover the methods used to rank
various types of data and make them suitable for analysis and plotting.

3.3.1 Concept of Ranking

Data ranking provides an estimate of what percentage of population is represented by the particular test
sample. Ranking presents an alternative to submitting data in frequency-histogram form due to the fact that in
engineering applications often only small samples are available. For example, if we test five items and observe
failures at 100, 200, 300, 400 and 500 hours respectively, then the rank of the first data point at 100 hours
would be 20 % (1), the rank of the second 40 % (%), and so on, which is sometimes referred as naive rank
estimator. This, however, would statistically imply that 20 % of the population would have shorter life than
100 hours. By the same token assuming that the fifth sample represents 100 % of the population we concede
to the assumption that all of the units in the field will fail within 500 hours. However, for probability plotting,
it is better to make an adjustment to allow for the fact that each failure represents a point on a distribution.
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To overcome this, and thus to improve the accuracy of the estimation mean and median ranking were
introduced for probability plotting.

3.3.2 Mean Rank

Mean ranks are based on the distribution-free model and are used mostly to plot symmetrical statistical
distributions, such as the normal. The usual method for mean ranking is to use (N + 1) in the denominator,
instead of N, when calculating the cumulative percentage position:

i
N +1

mean rank =

3.1

3.3.3 Median Rank

Median ranking is the method most frequently used in probability plotting, particularly if the data are known
not to be normally distributed. Median rank can be defined as the cumulative percentage of the population
represented by a particular data sample with 50 % confidence. For example if the median rank of the second
sample out of 5 is 31.47 % (see Table 3.1), that means that those two samples represent 31.47 % of the total
population with 50 % confidence. There are different techniques which can be employed to calculate the
median rank. The most common methods include cumulative binomial and its algebraic approximation.

3.3.4 Cumulative Binomial Method for Median Ranks

According to the cumulative binomial method, median rank can be calculated by solving the cumulative
binomial distribution for Z (rank for the j’h failure) (Nelson 1982):

N

P= NY zk1 = v+ 3.2)
— k
=J

where N is the sample size and j is the order number.
The median rank would be obtained by solving the following equation for Z:

N

050=>" (?j) 7k — Z)N* (3.3)

k=j

The same methodology can then be repeated by changing P from 0.50 (50 %) to our desired confidence
level. For P = 95 % one would formulate the equation as:

N

0.95 = Z (?j) ZK(1 — z)N-* (3.4)

k=j

Table 3.1 Median rank for the sample size of 5.

k 1 2 3 4 5

Median rank, if n =5 12.94 % 31.47 % 50.0 % 68.53 % 87.06 %
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As it will be shown in this chapter, the concept of ranking is widely utilised in both graphical plotting and
computerized data analysis methods.

3.3.5 Algebraic Approximation of the Median Rank

The median ranks are well tabulated and published, also most statistical software packages have the option
to calculate them (Minitab®, SAS®, etc.). For example, Weibull++® software has a ‘Quick Calculator Pad’
allowing the user to calculate any rank for any combination of sample size and number of failures. However
when neither software nor tables are available or when the sample is beyond the range covered by the available
tables the approximation formula (3.5), known as Benard’s approximation, can be used. The jth rank value is
approximated by:

j—03

Median rank r; = NT04

(3.5)

Where: j = failure order number and N = sample size.
This approximation formula is widely utilized in manual probability plotting employing graphical methods
with distribution papers, such as Weibull, Normal, Lognormal, Extreme Value and others.

3.3.6 Ranking Censored Data

When dealing with censored data, the probability plotting procedure becomes more complicated. The concept
of censored data analysis is easier to explain with right censored data. Suspended items are not plotted as data
points on the graph, but their existence affects the ranks of the remaining data points, therefore the ranks get
adjusted. This is done to reflect the uncertainty associated with the unknown failure time for the suspended
items. The derivation of adjusted median ranks for censored data is carried out as follows:

List order number (i) of failed items (i =1, 2, .. .).

List increasing ordered sequence of life values () of failed items.

3 Against each failed item, list the number of items which have survived to a time between that of the
previous failure and this failure (or between ¢ = 0 and the first failure).

4 For each failed item, calculate the mean order number i, using the formula

N =

iti = l.fi—] + Nti (3.6)
where
1) — i
N, = (Dt 3.7)
1 + (n — number of preceding items)
in which 7 is sample size.
5 Calculate median rank for each failed item, using the approximation from (3.5):
i, —0.3 % (3.8)
r. = :
"Tay04

For the applications of this method, please see Example 3.2 later in this chapter (Section 3.4.2).
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3.4 Weibull Distribution

In reliability engineering Weibull probability data analysis is probably the most widely utilized technique of
processing and interpreting life data. One of many advantages is the flexibility of the Weibull distribution,
easy interpretation of the distribution parameters, and their relation to the failure rates and the bathtub curve
concept shown in Figure 1.6. In this chapter the Weibull distribution will be used to illustrate the techniques
of probability plotting and life data analysis. Most of the same principles apply to data analysis involving
other statistical distributions, many of which were covered in Chapter 2.

3.4.1 Two Parameter Weibull

The simpler version of the Weibull distribution is the 2-parameter model. In accordance with its name, this
distribution is defined by two parameters. As described in Chapter 2, Section 2.6.6 the cumulative failure

distribution function F(¢) is:
¢ B
Ft)y=1—exp|— (—) 3.9)
n
where: ¢ =time.

B = Weibull slope (the slope of the failure line on the Weibull chart), also referred as a shape
parameter.

n = Characteristic life, or the time by which 63.2 % of the product population will fail, also referred
to as a scale parameter.

Equation (3.9) can be rewritten as:

—1 = Ay 3.10
1—F<z)_exp<5> 610

Or by taking two natural logarithms Eq. (3.10) will take the form of:

Inln

T-F0 = p(nz) — (Blnn) (3.11)

It can be noticed that (3.11) has a linear form of Y = X + C.

Where:
X=Int
Y =1Inl —1
= Inin
C=—-BInn

Therefore (3.11) represents a straight line with a slope of 8 and intercept C on the Cartesian X, Y coordinates
(3.12). Hence, if the data follows the 2-parameter Weibull distribution, the plot of In 1_;”0 against In(z) will
be a straight line with the slope of B.
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3.4.2 Weibull Parameter Estimation and Probability Plotting

This type of scale is utilized in what is called Weibull paper, Figure 3.7. Weibull paper is constructed based on
the X- and Y-transformations mentioned above, where the Y-axis (or double log reciprocal scale) represents
unreliability F(f) = 1 — R(¢) and the X-axis represents time or other usage parameter (miles, km, cycles, runs,
switches, etc.). Then, given the x and y value for each data point, each point can easily be plotted.
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The points on the plot represent our times-to- failure data. In probability plotting, we would use these
times as our x values or time values. The appropriate y plotting positions, or the unreliability values would
correspond to the median rank of each failure point.

After plotting each data point on the Weibull paper we draw the best fitting straight line through those
points. Parameter 8 can be determined as the slope of that line (graphically or arithmetically) and parameter
n can be determined as the time corresponding to 63.2 % unreliability on the Y-axis. To derive this number
we substitute = 7 into (3.10) and calculate the cumulative failure function:

B
F(t)=1—exp |:— <%) :| =1—exp(—1) =0.632 (63.2%) (3.13)

Even though Weibull paper is rarely used these days, understanding and ability to work with it provides a
good foundation for using software tools. In addition, most commercially available Weibull analysis packages
use the same graphics format as Weibull paper.

As mentioned before, one of the advantages of the Weibull distribution is its flexibility. For example, in
the case of B = 1 the Weibull distribution reduces to the exponential distribution. When 8 = 2 the Weibull
distribution resembles Rayleigh distribution (see, e.g. Hines and Montgomery, 1990). In the case of g = 3.5
the Weibull pdf will closely resemble the normal curve.

Example 3.1 Weibull Analysis using Rank Regression

Let us revisit the case where five units on test fail at 100, 200, 300, 400, 500 hours. Pairing those numbers
with their median ranks (Table 3.1) would generate the following five data points: (100 hours, 12.94 %)
(200 hours, 31.47 %) (300 hours, 50.0 %) (400 hours, 68.53 %) (500 hours, 87.06 %). Plotting those points
on Weibull paper would produce the graph shown in Figure 3.8.

Once the line has been drawn, the slope of the line can be estimated by comparing it with the S-lines on
the Weibull paper. Figure 3.8 shows the slope 8 & 2.0. According to Eq. (3.13), 7 is the life corresponding
to 63.2 % unreliability, hence n ~ 320.

Therefore the reliability function for this product can be presented as a Weibull function:

£ \20
R(t) = exp |:— <%) :|

and can be calculated for any given time, ¢.

Having ranked and plotted the data (regardless of the particular statistical distribution), the question that
often arises is What is the best straight line fit to the data? (assuming, of course, that there is a reasonable
straight line fit). There can be a certain amount of subjectivity or even a temptation to adjust the line a little
to fit a preconception. Normally, a line which gives a good ‘eyeball fit’ to the plotted data is satisfactory, and
more refined manual methods will give results which do not differ by much. On the other hand, since the
plotted data are cumulative, the points at the high cumulative proportion end of the plot are more important
than the early points. However, a simple and accurate procedure to use, if rather more objectivity is desired,
is to place a transparent rule on the last point and draw a line through this point such that an equal number of
points lie to either side of the line.

Those are just general considerations for manual probability plotting. Clearly, computer software can
process the data without subjectivity, with more precision, and with more analytical options of data processing.
Computerized data analysis will be discussed in detail in Section 3.5.
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Figure 3.8 Data plotted on Weibull paper for Example 3.1, B ~ 2.0 and n ~ 320.

Example 3.2 Calculating Adjusted Ranks

Consider the same five items on test as in Example 3.1 only this time units 2 and 4 have not failed and were
removed from test at the same times 200 and 400 hours respectively (summarized in Table 3.2). Calculate the
adjusted ranks for the new data set.

From Egs. (3.6) to (3.8)

S5+1-1 5+1-225

541-0 Nygo= ="~ =125 Nsp= =22 _ 1875
Nigp=——=1.0 : _ _
100 TG-0 1+(5-2) 14+(G—-4)

S _ _ i300 = £100 + N300 is00 = 1300 + Nsoo

fio0 =10 + Nigo =0+1.0=10 =1.0+1.25=225 =225+ 1.875 =4.125
1-0.3

Floo = — 0.1296 2.25-0.3 4.125-03

= — =0.3611 = —— =0.7083

>+04 0= "S54 50 =504

Table 3.2 presents the summary of the steps in calculating the adjusted ranks for the three failure points.
After the adjusted ranks are calculated the probability plotting follows the same procedure as in Example 3.1
only with three data points (#1, #3, #5).
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Table 3.2 Data summary and adjusted ranks calculation for Example 3.2.

ltem # Time (hours) Fail or Suspend N iy Iy

1 100 Failure 1 1.0 1.0 12.96 %
2 200 Suspended — — —

3 300 Failure 2 1.25 2.25 36.11%
4 400 Suspended — — —

5 500 Failure 3 1.875 4.125 70.83 %

Even though the rank adjustment method is the most widely used method for performing suspended items
analysis, it has some serious shortcomings. It can be noticed from this analysis of suspended items that only
the position where the failure occurred is taken into account, and not the exact time-to-suspension. This
shortfall is significant when the number of failures is small and the number of suspensions is large and not
spread uniformly between failures, as with Example 3.2. That is the reason that in most cases with censored
data the Maximum Likelihood method (see Section 3.5.2) is recommended to estimate the parameters instead
of using least squares, presented in Section 3.5.1. The reason is that maximum likelihood does not look at
ranks or plotting positions, but rather considers each unique time-to-failure or suspension.

3.4.3 Three Parameter Weibull

As mentioned in Chapter 2, the product cumulative failure distribution function F(¢) is presented in a form,
that is slightly more complicated than (3.9) with an additional parameter y:

()
F(t)=1—exp _<T) (3.14)

Where y = expected minimum life, also referred as location parameter, because it defines the starting
location of the pdf graph along the X-axis of the coordinate system. (Other literature may use the characters
Xy, tg, or p in place of y for the location parameter.) Under the assumption of 3-parameter Weibull no failure
of the product can possibly occur prior to the time y, therefore it is also referred as minimum life.

A 3-parameter Weibull plot can no longer be represented by a straight line on a Weibull plot (see Figure 3.9)
thus creating more difficulty for manual probability plotting. There is a technique for manual 3-parameter
Weibull plotting, involving shifting every data point to the left (or right) by a certain value in the logarith-
mic scale until the data points become aligned. That shift value determines the minimum life y, however
computerized plotting would clearly provide a more accurate and certainly more expedient solution.

The inclusion of a location parameter for a distribution whose domain is normally [0, co] will change
the domain to [y, oo], where y can be either positive or negative. This can have some profound effects
in terms of reliability. For a positive location parameter, this indicates that the reliability for that particular
distribution is always 100 % up to that point . On some occasions the location parameter can be negative,
which implies that failures theoretically occur before time zero. Realistically, the calculation of a negative
location parameter is indicative of quiescent failures (failures that occur before a product is used for the first
time) or of problems with the manufacturing, packaging or shipping processes.

Discretion must be used in interpreting data that do not plot as a straight line, since the cause of
the non-linearity may be due to the existence of mixed distributions or because the data do not fit the
Weibull distribution. The failure mechanisms must be studied, and engineering judgement used, to ensure
that the correct interpretations are made. For example, in many cases wearout failure modes do exhibit a
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Figure 3.9 3-parameter Weibull distribution plotted with Weibull++® (Reproduced by permission of ReliaSoft).

finite failure-free life. Therefore a value for y can sometimes be estimated from knowledge of the product
and its application.

In quality control and reliability work we often deal with samples which have been screened in some way.
For example, machined parts will have been inspected, oversize and undersize parts removed, and electronic
parts may have been screened so that no zero-life (‘dead-on-arrival’) parts exist. Screening can show up on
probability plots, as a curvature in the tails. For example, a plot of time to failure of a fatigue specimen will
normally be curved since quality control will have removed items of very low strength. In other words, there
will be a positive minimum life and be a good fit for 3-parameter Weibull.

Additional recommendations for preferring 3-parameter Weibull over 2-parameter Weibull include the
number of data points (which should be no less than 10) and justification of the minimum life existence
based on the failure mechanism. Therefore, better mathematical fit alone is not a good enough reason for
choosing 3-parameter Weibull. Choice of the distribution will greatly affect reliability numbers, even between
2-parameter and 3-parameter Weibull! Both parameters 8 and n will be affected by that choice.

3.4.4 The Relationship of B-Parameter to Failure Rates and Bathtub Curve

As explained in Chapter 2, the value of f reflects the hazard function or the expected failure rate of the
Weibull distribution and inferences can be drawn about a population’s failure characteristics by considering
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Figure 3.10 Relationship between the bathtub curve and the Weibull slope .

whether the value of f is less than, equal to, or greater than one. The relationship between the value of g and
the corresponding section on the bathtub curve (Figure 1.6) can be illustrated in Figure 3.10.

Since most Weibull analysis these days is done with commercially available software, the users may have
a tendency to run an analysis and report the results without closely analysing their validity. Therefore the
following guide would help to better evaluate the results and make an appropriate solution about the data
based on the value of f:

If B < 1 indicates a decreasing failure rate and is usually associated with infant mortality, sometimes referred
as early failures. It often corresponds to manufacturing related failures and failures recorded shortly after
production. This can happen for several reasons including a proportion of the sample being defective or
other signs of early failure.

If B &~ 1 a constant failure rate and is usually associated with useful life. Constant failure rate, which often
corresponds to the mid-section of the life of the product and can be a result of random failures or mixed
failure modes.

If B > 1 indicates an increasing failure rate and is usually associated with wearout, corresponding to the end
life of the product with closer inter-arrival failure times. If recorded at the beginning of the product life
cycle it can be a sign of a serious design problem or a data analysis problem.

If B > 6, it is time to become slightly suspicious. Although > 6 is not uncommon, it reflects an accelerated
rate of failures and fast wearout, which is more common for brittle parts, some forms of erosion, failures
in old devices and less common for electronic systems. Some biological and chemical systems may have
B > 6 value, for example human mortality, oil viscosity breakdown, and so on. Also, a large number of
censored data points compared to complete data sets can result in high 8. Different data analysis options
can be recommended to re-evaluate the validity of the results.

If B > 10, it is time to become highly suspicious. Such a high g is not unheard of, but fairly rare in engineering
practice. It reflects an extremely high rate of wearout, and not an expected value for the analysis of complete
or nearly complete data set. However, it can be a result of highly censored data with a small number of
failures (e.g. as an exercise, try the case with two units failing at 900 and 920 hours respectively and
five units suspended at 1000 hours). Also a high B could be a result of stepped overstress testing, where
environmental conditions become more and more severe with each step, therefore causing the parts to fail
at the accelerated rate.
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3.4.5 Bx-Life

Another parameter, that is used to specify reliability is the B-life, which is the time (or any other usage
measure) by which a certain percent of the population can be expected to fail. It is expressed as By, where
X is the percentage of the population failing. For example B life of 15 years would be equivalent to 90 %
reliability for 15 year mission life. This relationship can be expressed by the equation:

R(By) = (100 — X)% (3.15)

and, as applied to Weibull distribution,

Bx\’ X

3.5 Computerized Data Analysis and Probability Plotting

Computerized life data analysis in essence uses the same principles as manual probability plotting, except
that it employs more sophisticated mathematical methodology to determine the line through the points,
as opposed to just ‘eyeballing’ it. Modern data analysis software offers clear advantages by providing the
capability to perform more accurate and versatile calculations and data plotting. This section will cover the two
most commonly used techniques of computerized data analysis: Rank Regression and Maximum Likelihood
Estimator (MLE). Probability plotting in this section will be done with the use of Weibull4++® software.
This program is widely utilized by reliability engineers worldwide and has enough versatility and statistical
capability to handle multiple analytical tasks with various types of reliability data and a range of distribution
functions. As mentioned before, even though most of the material in this chapter is applied to the Weibull
distribution, the general principles remain the same regardless of the statistical distribution being modelled.

3.5.1 Rank Regression on X

One of the ways to draw the line through the set of data points is to perform a rank regression. It requires
that a line mathematically be fitted to a set of data points such that the sum of the squares of the vertical or
horizontal deviations from the points to the line is minimized.

Assume that a set of data pairs (xy, y;), (X2, y2), - - ., (X, yy) were obtained and plotted. Then, according to
the least squares principle, which minimizes the horizontal distance between the data points and the straight
line fitted to the data Figure 3.11, the best fitting straight line to these data is the straight line x = a + by
such that:

n

S @+by —x) =mina, b)Y (a+ by —x)) (3.17)

i=1 i=1

Where, @ and b are the least squares estimates of a and b and N is the number of data points.
The solution of (3.17) (see ReliaSoft, 2008a) for @ and b yields:

a="= _pEL —x— by (3.18)




86 Chapter 3 Life Data Analysis and Probability Plotting

Figure 3.11 Minimizing distance in the X-direction.
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One of the advantages of the rank regression method is that it can provide a good measure for the fit of the
line to the data points. This measure is known as the correlation coefficient. In the case of life data analysis,
it is a measure for the strength of the linear relation between the median ranks (Y-axis values) and the failure
time data (X-axis values). The population correlation coefficient has the following form:

Oxy

(3.20)

p =
O'xO’y

where o, is the covariance of x and y, o is the standard deviation of x, and o is the standard deviation of
y (based on the available data sample). The estimate of the correlation coefficient for the sample of N data
points can be found in ReliaSoft (2008a) or other statistical references.

The closer the correlation coefficient is to the absolute value of 1, the better the linear fit. Note that +1
indicates a perfect fit with a positive slope, while -1 indicates a perfect fit with a negative slope. A perfect fit
means that all of the points fall exactly on a straight line. A correlation coefficient value of zero would indicate
that the data points are randomly scattered and have no pattern or correlation in relation to the regression
line model. p? is often used instead of p to indicate correlation, since it provides a more sensitive indication,
particularly with probability plots.

As an alternative, the data can be analysed using Rank Regression on Y, which is very similar to Rank
Regression on X with the only difference that the solution minimizes the sum of the Y-distances between the
data points and the line. It is important to note that the regression on Y will not necessarily produce the same
results as the regression on X, although they are usually close.
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3.5.2 Maximum Likelihood Estimation (MLE)

Many computer-based methods present a probability plotting alternative to rank regression, an example is
the Maximum Likelihood Estimator (MLE). The idea behind maximum likelihood parameter estimation
is to determine the parameters that maximize the probability (likelihood) of the sample data fitting that
distribution (see ReliaSoft, 2008a). Maximum likelihood estimation endeavours to find the most ‘likely’
values of distribution parameters for a set of data by maximizing the value of what is called the likelihood
function. From a statistical point of view, the method of maximum likelihood is considered to be more robust
(with some exceptions) and yields estimators with good statistical properties. In other words, MLE methods
are versatile and apply to most models and to different types of data (both censored and uncensored).
If x is a continuous random variable with pdf:

fx;01,0a, ..., 6),

where 61, 05, . . . 0y are k unknown constant parameters that need to be estimated, conduct an experiment and
obtain N independent observations, x1, X, . . ., Xy Which correspond in the case of life data analysis to failure
times. The likelihood function (for complete data) is given by:

N
L(xl,x2,...,xN |@1,92,...,9k)=L an(x,‘;el,@z,...,ek) i = 1,2,...,N (321)
i=1
The logarithmic likelihood function is:
N
A=InL =Y Inf(x:60,6.....00) (3.22)
i=1

The maximum likelihood estimators (MLE) of 61, 6,, ... 0y, are obtained by maximizing L or A.
By maximizing A, which is much easier to work with than L, the maximum likelihood estimators (MLE)

of 01, 65, ... 6 are the simultaneous solutions of k equations such that:
(A
( )=0, j=12,...k
90;

Please note that many commercially available software packages plot the MLE solutions using median
ranks (points are plotted according to median ranks and the line according to the MLE solutions). However
as can be seen from Eq. (3.21), the MLE method is independent of any kind of ranks. For this reason, many
times the MLE solution appears not to track the data on the probability plot. This is perfectly acceptable since
the two methods are independent of each other, and in no way suggests that the solution is wrong.

More on Maximum Likelihood Estimator including the analysis of censored data can be found in ReliaSoft
(2008a), Nelson (1982), Wasserman (2003) or Abernethy (2003).

Example 3.3 Illustrating MLE Method on Exponential distribution

This method is easily illustrated with the one-parameter exponential distribution. Since there is only one
parameter, there is only one differential equation to be solved. Moreover, this equation is closed-form,
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owing to the nature of the exponential pdf. The likelihood function for the exponential distribution is
given by:

n n _}‘if[
Lt ty o ty) = l_[f(t,-) = er*“f =\e =

i=1 i=1

where X is the parameter we are trying to estimate. For the exponential distribution, the log-likelihood function
(3.22) takes the form:

A =1n(L) =n In(x) — AZI;

i=1

Taking the derivative of the equation with respect to A and setting it equal to zero results in:

This gives the closed-form solution for the MLE estimate for the one-parameter exponential distribution.
As can be seen, parameter A is estimated as the inverse of MTTF (Mean Time to Failure). Obviously, this
is one of the most simplistic examples available, but it does illustrate the process. The methodology is more
complex for distributions with multiple parameters and often does not have closed-form solutions. Applying
MLE to censored data is also fairly complex and mathematically involved process reserved for computerized
solutions. More details on MLE mathematics can be found in ReliaSoft (2011), Nelson (1982) and other
Bibliography at the end of this chapter.

3.5.3 Recommendation on Using Rank Regression vs. MLE

Rank regression methods often produce different distribution parameters than MLE, therefore it is a logical
question to ask which method should be applied with which type of data. Based on various studies (see
ReliaSoft (2008a), Wasserman (2003) and Abernethy (2003)) regression generally works best for data sets
with smaller (<30) sample sizes (as sample sizes get larger, 30 or more, these differences become less
important) that contain only complete data. Failure-only data is best analysed with rank regression on X, as
it is preferable to regress in the direction of uncertainty. When heavy or uneven censoring is present and/or
when a high proportion of interval data is present, the MLE method usually provides better results. It can also
provide estimates with one or no observed failures, which rank regression cannot do.

In the case where it is not clear which method would provide more accurate results, it is advisable to run
both methods and compare the results. The following scenarios are possible:

The RR and MLE results do not differ much.

The results differ and one method might provide unreasonable values of - (too high or too low).

The results differ and one method provides the values of 8 which do not fit the model IFR vs. DFR (see
Section 3.4.4).
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Figure 3.12 Two-sided 90 % confidence bounds.

Those outcomes can help to make a more intelligent choice of the analysis method. It is also advisable to try
several distributions using both MLE and RR The choice of MLE vs. RR may also affect the choice of best fit
distribution for a particular data set, for example 2P Weibull may show the best fit using MLE, while the normal
distribution can be the best fit for the same data set using RRX method (see Section 3.7 for more details).

3.6 Confidence Bounds for Life Data Analysis

Because life data analysis results are estimates based on the observed lifetimes of a sample of units, there is
uncertainty in the results due to the limited sample sizes. Confidence bounds (also called confidence intervals)
briefly covered in Chapter 2 are used to quantify this uncertainty due to sampling error by expressing the
confidence that a specific interval contains the quantity of interest. Whether or not a specific interval contains
the quantity of interest is unknown. For continuous distributions, confidence bounds calculations involve the
area under pdf curve corresponding to the percentage confidence sought for the particular solution, Figure 3.12.

When we use two-sided confidence bounds (or intervals), we are looking at a closed interval where a certain
percentage of the population is likely to lie. That is, we determine the values, or bounds, between which lies
a specified percentage of the population. For example, when dealing with 90 % two-sided confidence bounds
of [X, Y], we are saying that 90 % of the population lies between X and Y with 5 % less than X and 5 % greater
than Y. Figure 3.12.

With one-sided intervals we define the target value to be greater or less than the bound value. For example,
if X is a 95 % upper one-sided bound; this would imply that 95 % of the population is less than X. If X is a
95 % lower one-sided bound, this would indicate that 95 % of the population is greater than X, Figure 3.13.

95%
95%
5.0%

5.0%

X Y
Lower One-Sided Confidence Bounds Upper One-Sided Confidence Bounds

Figure 3.13 One-sided confidence bounds.
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Table 3.3 5 and 95 % ranks for the sample size of 5.

k 1 2 3 4 5

5% rank, if n =5 1.02 % 7.64 % 18.92 % 34.25% 54.92 %
95 % rank, if n =5 45.07 % 65.74 % 81.07 % 92.36 % 98.98 %

Care must be taken to differentiate between one- and two-sided confidence bounds, as these bounds can
take on identical values at different percentage levels. For example, the analyst would use a one-sided lower
bound on reliability, a one-sided upper bound for percentage failing under warranty and two-sided bounds
on the parameters of the distribution. Note that one-sided and two-sided bounds are related. For example, the
90 % lower two-sided bound is the 95 % lower one-sided bound and the 90 % upper two-sided bound is the
95 % upper one-sided bound. See Figure 3.12 and Figure 3.13.

3.6.1 Confidence Intervals for Weibull Data

Weibull analysis can also be done with various degrees of confidence level. The rank calculations were made
using the median rank, which corresponds to 50 % confidence level. Thus, for example, for 2-sided 90 %
confidence level similar to Figure 3.12, we would need to use different ranks for the data plotting. Specifically,
we would need to graph the same failure points using 5 % and 95 % ranks to provide [5 %; 95 %] confidence
bounds. That can be accomplished by applying, for example, the cumulative binomial method per equation
(3.2). Table 3.3 provides 5 % and 95 % ranks respectively for the sample size of 5. More 5 % and 95 % rank
values for various sample sizes are provided in the tables in Appendix 4.

As applied to Example 3.1 the first failure at 100 hours has the following ranking: 1.02 % (5 % rank)
and 45.07 % (95 % rank). Thus 90 % confidence interval for unreliability at 100 hours, F (100 hrs) would be
between 1.02 % and 45.07 %. Similarly, we can plot 5 % and 95 % ranks for each of the five failure points
resulting in the graph Figure 3.14.

The confidence bounds Figure 3.14 are quite wide. With 90 % confidence, the reliability at 100 hours
of operation can be anywhere between 54.93 and 98.98 %. The reason for such wide intervals is the small
number of data points.

As the number of samples increases the respective ranks would come in smaller increments and thus closer
together. As a result, the confidence bounds become narrower and thus closer to the median rank straight line.

To illustrate the effect of a larger sample size on the confidence bounds, consider the 5 % rank of the 2nd
sample out of 10. Quantitatively 2 out of 10 represents the same 20 % of the population as the 1st sample out
of 5, however the 5 % rank in this case is 3.68 % as opposed to 1.02 % for the five samples (see Appendix 4).
Similarly the 95 % rank of the 2nd sample out of 10 is 39.2 % as opposed to 45.07 % for the 1 out of 5 case.
In both cases the 10-sample ranks would be plotted closer to the centre line, which would result in narrower
confidence bounds for the same data fit.

3.6.2 Individual Parameter Bounds

It is often important to derive the confidence limits on the parameters of the distribution since decisions may
be based upon those values. For example, the S-value characterizes the trend in failure rate of the product
population and its place on the bathtub curve, Figure 3.10. Individual parameter bounds are used to evaluate
uncertainty in terms of the expected (or mean) values of the parameters. For bounds on individual parameters,
statistical software usually provides the Fisher matrix, likelihood ratio, beta binomial, Monte Carlo and
Bayesian confidence bounds.
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Figure 3.14  Weibull++® two-sided 90 % confidence bounds for Weibull distribution (Reproduced by permis-
sion of ReliaSoft).

3.6.2.1 Fisher Matrix Bounds

Fisher Matrix